著者
中島 涼輔 吉田 茂生
雑誌
JpGU-AGU Joint Meeting 2020
巻号頁・発行日
2020-03-13

Magnetohydrodynamic (MHD) shallow water linear waves are examined on a rotating sphere with a background toroidal magnetic field expressed as B0Φ=B0sinθ, where B0 is constant, θ is the colatitude and Φ is the azimuth. The MHD shallow water equations are often used in studying the dynamics of the solar tachocline (e.g. Gilman & Dikpati, 2002[1]; Márquez-Artavia et al., 2017[2]) and sometimes the outermost Earth's core (Márquez-Artavia et al., 2017[2]; Nakashima, Ph.D. thesis, 2020[3]) and exoplanetary atmosphere (e.g. Heng & Workman, 2014[4]). In this poster, we especially focus on the propagation mechanisms and the force balances of polar trapped waves and unstable modes (Márquez-Artavia et al., 2017[2]; Nakashima, Ph.D. thesis, 2020[3]).Comprehensive searches for eigenmodes yield two polar trapped modes when the main magnetic field is weak (the Lehnert number α=VA/2ΩR2<0.5, where VA is the Alfvén wave velocity, Ω is the rotation rate and R is the sphere radius). One is the slow magnetic Rossby waves, which propagate eastward for zonal wave number m≧2 (Márquez-Artavia et al., 2017[2]). As the Lamb's parameter ε=4Ω2R2/gh→0 (where g is the gravity acceleration and h is the equivalent depth), these branches asymptotically approach the eigenvalues of two-dimensional slow magnetic Rossby waves. Another is newly discovered westward polar trapped modes (Nakashima, Ph.D. thesis, 2020[3]).In the case when α>0.5 (the background field is strong), these novel westward modes merge with the westward-propagating fast magnetic Rossby waves. In addition, only when m=1, polar trapped unstable modes appear due to the interaction between these fast magnetic Rossby waves and westward-propagating slow magnetic Rossby waves. These growth modes are believed to be the polar kink (Tayler) instability (Márquez-Artavia et al., 2017[2]).In order to easily understand the propagation mechanisms and the force balances of polar trapped modes, we investigate a cylindrical model around a pole with an artificial boundary condition. This model provides the approximate dispersion relations and eigenfunctions of polar trapped modes, and indicates that stable polar trapped modes are governed by magnetostrophic balance and that the metric magnetic tension force causes the difference between the slow magnetic Rossby waves and the novel westward modes. For m=1 and α>0.5, the balance between Coriolis and Lorentz forces is disrupted and the part of magnetic tension with which Coriolis force can not compete induces kink instability.[ Reference ][1] Gilman, P. A., Dikpati, M. (2002) Astrophys. J., 576, 1031. doi: 10.1086/341799[2] Márquez-Artavia, X., Jones, C. A., Tobias, S. M. (2017) Geophys. Astrophys. Fluid Dyn., 111, 282. doi: 10.1080/03091929.2017.1301937[3] Nakashima, R. (2020) Ph.D. thesis, Kyushu University. http://dyna.geo.kyushu-u.ac.jp/HomePage/nakashima/pdf/doctoral_thesis.pdf[4] Heng, K., Workman, J. (2014) Astrophys. J. Sup., 213, 27. doi: 10.1088/0067-0049/213/2/27

言及状況

Twitter (1 users, 1 posts, 0 favorites)

JpGU-AGU Joint Meeting 2020 宣伝 https://t.co/FWbSo1Uis0 回転球面上の電磁流体浅水波の線形波動 https://t.co/nTkXLvr40X その地球外核と地磁気変動への応用

収集済み URL リスト