- 著者
-
土田 正明
デ・サーガステイン
鳥澤健太郎
村田 真樹
風間 淳一
黒田 航
大和田 勇人
- 雑誌
- 情報処理学会論文誌 (ISSN:18827764)
- 巻号頁・発行日
- vol.52, no.4, pp.1761-1776, 2011-04-15
情報爆発の時代に入り,大規模コーパスと計算機パワーの増大を背景に,構文的パターンに基づいて「因果関係」などの単語間の意味的関係の知識を獲得する研究が進められている.しかしながら,それらの研究は,文書中に直接的かつ明示的に書かれた知識を獲得するにとどまり,人間であれば解釈可能な間接的記述から獲得することや,文書に書かれていない知識を過去に蓄積された知識からの推論によって大規模に獲得することは行われていない.このような知識の獲得は,より大量の関係を獲得するためだけではなく,人類のイノベーションの加速にとっても重要である.本稿では,既存の構文的パターンに基づく方法で獲得された単語の意味的関係のデータベース,すなわち,特定の意味的関係を持つ単語対の集合を,類推によって大規模に拡張する方法を提案する.提案法は,入力された単語対の中の語を,ウェブから自動獲得した類似語に置換して大量の仮説を生成し,さらに単語間の類似度に基づいて仮説をランキングする.提案法は,従来法では困難な間接的記述からの意味的関係獲得を可能にして,さらには,そもそも文書に記述されている可能性が低い知識を獲得できる.約1億ページのウェブ文書を用いた実験によって,これらを検証するとともに,いくつかの意味的関係に関して,提案法で上位にランキングされた仮説では,最新の構文パターンに基づく獲得法とほぼ変わらない精度を達成できることを示す.