著者
三宅 隆 原嶋 庸介 深澤 太郎 赤井 久純
出版者
一般社団法人 粉体粉末冶金協会
雑誌
粉体および粉末冶金 (ISSN:05328799)
巻号頁・発行日
vol.69, no.Supplement, pp.S99-S108, 2022-01-30 (Released:2022-01-30)
参考文献数
103

First-principles calculation based on density functional theory is a powerful tool for understanding and designing magnetic materials. It enables us to quantitatively describe magnetic properties and structural stability, although further methodological developments for the treatment of strongly-correlated 4f electrons and finite-temperature magnetism are needed. Here, we review recent developments of computational schemes for rare-earth magnet compounds, and summarize our theoretical studies on Nd2Fe14B and RFe12-type compounds. Effects of chemical substitution and interstitial dopants are clarified. We also discuss how data-driven approaches are used for studying multinary systems. Chemical composition can be optimized with fewer trials by the Bayesian optimization. We also present a data-assimilation method for predicting finite-temperature magnetization in wide composition space by integrating computational and experimental data.