著者
佐藤 友彦 吉屋 一美 丸山 茂徳
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.128, no.4, pp.571-596, 2019-08-25 (Released:2019-09-20)
参考文献数
109
被引用文献数
11 11

Phylogenetic analysis is one of the useful tools available for revealing the evolution of life on the Earth; however, it has difficulty in principle distinguishing old and new genomes just by comparing phylogenomic trees. To overcome this difficulty, a new method is introduced which utilizes the Earth's history derived from geologic information to trace genomic evolution. This idea is inspired by Darwin's natural selection, and explains how living organisms change with the environment. In other words, life's genome does not change if the environment remains the same. A key is the birthplace of life on Hadean Earth, which is thought to be an ultra-reducing environment with H2 produced in abundance through serpentinization. OD1 is a potential microbe that has survived on the Earth since the Hadean. Its habitat, Hakuba-Happo in Japan, is a unique serpentinite-hosted hydrothermal system on land, and it has avoided evolution by remaining in a super-reducing environment from the Hadean to the present. OD1 is regarded as a “living fossil” of the Hadean microbe. Ultra-reducing environments have disappeared over the Earth's history. How has OD1 survived since the Hadean to the present? A possible scenario is proposed based on Plate Tectonics. OD1 habitats have gone through the following transitions: (1) super-reducing environment in a natural nuclear geyser on a primordial continent in the Hadean; (2) serpentinite-hosted hydrothermal system along a mid-oceanic ridge transform fault during the Archean-Proterozoic; (3) subduction-accretion and escape from oxygenated Phanerozoic ocean floor; and, (4) jacked up by growth of accretionary complexes and taking refuge in a hydrothermal system above a volcanic front. OD1 habitats have been reduced with geological age as free oxygen has increased in the surface environment. OD1 may be a “living microfossil” of the Hadean, making its way continuously through ultra-reducing environments on a tightrope.
著者
吉屋 一美 佐藤 友彦 大森 聡一 丸山 茂徳
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.128, no.4, pp.625-647, 2019-08-25 (Released:2019-09-20)
参考文献数
77
被引用文献数
4 4

The Hadean surface was mainly covered by three kinds of rock: komatiite, KREEP basalt, and anorthosite, which were remarkably different from those on the modern Earth. Water–rock interactions between these rocks and water provided a highly reducing environment and formed secondary minerals on the rock surface that are important for producing metallo-enzymes for the emergence of primordial life. Previous studies suggest a correlation with active sites of metallo-enzymes and sulfide minerals based on an affinity with their structure, but they do not discuss the origins of metallic elements contained in these minerals, which are critical to understand where primordial life was born. Secondary minerals formed through water–rock interactions of komatiite in a nuclear geyser system are investigated, followed by a discussion of the relationship between active sites of metallo-enzymes and secondary minerals. Instead of komatiite, we used serpentinite collected from Hakuba Happo area, Nagano Prefecture in central-north Japan, which is thought to be one of the Hadean modern analogues for the birthplace of life. Several minor minerals were found, including magnetite, chromite, pyrite, and pentlandite, in addition to the major serpentine minerals. Pentlandite is not been mentioned in previous studies as a candidate for supplying important metallic elements to form metallo-enzymes in previous studies. It also acts as a catalyst for hydrogen generation, because it closely resembles the structural features of an active site of hydrogenases. Nickel-iron sulfide, pentlandite, is considered to be one of the important minerals for the origin of life. In addition, what kinds of minor mineral would be obtained from water–rock interactions of these rocks is estimated using a thermo-dynamic calculation. KREEP basalt contains large amounts of iron, and it could be useful for producing metallo-enzymes, especially for ferredoxins, an electron transfer enzymes associated with the emergence of primordial life.