- 著者
-
西村友伸
大用庫智
高橋達二
- 雑誌
- 第75回全国大会講演論文集
- 巻号頁・発行日
- vol.2013, no.1, pp.101-102, 2013-03-06
本研究では人間認知の適応的特性の大規模コンピューティングへの適用例として、ヒトの認知バイアス(対称性・相互排他性)を持つ行動価値関数、 Kohno & Takahashi (2012) が提案したLSVR (loosely symmetric model with variable reference) モデルを用い、モンテカルロ木探索の評価値として実装し、囲碁AIでのゲーム木探索を通して効果を確認した。同様の行動価値関数としては期待損失の限界に保証を持つUCB1が有名だが、LSVRがUCB1と比較して、サンプリング回数が少ない時、また探索の幅が非常に広い時に、より良い性能をもたらすことを示す。更に、LSVRとUCB1の両者を使い分けるハイブリッドモデルについても検証し、その効果も確認した。