著者
桑原 克典 新田 貴士 Kuwahara Katsunori Nitta Takashi
出版者
三重大学教育学部
雑誌
三重大学教育学部研究紀要. 自然科学・人文科学・社会科学・教育科学 (ISSN:03899225)
巻号頁・発行日
vol.56, pp.1-29, 2005-03-31

三重大学の新田と名古屋大学の岡田によって汎関数空間上のFourier変換が定式化されたが、そこでの汎関数はƒ:{a:R→R}→Cというものを考えていた。一方、本論文ではdomainが測度空間(M, <special>μ0</special>)の場合、すなわちƒ:{a:M→R}→Cの場合を考えた。そして汎関数空間上のFourier変換を行うために、新田・岡田の理論にしたがって2回の拡大を用いるが、新田・岡田の2回の拡大がどんな*Nの無限大数よりも大きいような<special>☆(*N)</special>の無限大数の存在を保証するために、特殊なフィルターを用いていたのに対し、ここでは自然数全体の集合上のフレシェ・フィルターを含む超フィルターを用いる一般的な2回の拡大で議論を行った。そしてその結果、新田・岡田の場合と同様の結果が得られた。また、本論文は3つの章から構成されており、第1章では超準解析の議論に必要な事を簡単に述べ、第2章では超準解析の応用として知られているローブ測度空間とルベーグ測度空間の対応について、結果のみ述べる。そして最後の第3章では、本論文の題名にもなっている一般の汎関数空間上のFourier変換、但しdomainが測度空間の場合について述べる。