- 著者
-
真矢 滋
山口 晃広
稲木 達哉
植野 研
- 出版者
- 一般社団法人 人工知能学会
- 雑誌
- 人工知能学会全国大会論文集 第33回全国大会(2019)
- 巻号頁・発行日
- pp.1I4J205, 2019 (Released:2019-06-01)
IoTの発展に伴い、大量の時系列データが取得可能になりつつある。このような時系列データから有用な知見を発見するために、多変量時系列データを特徴的なパターンに分割するセグメンテーション方法が注目を集めている。しかしながら、既存手法では分割位置が変数に関わらず同一であり、変数間の特徴を捉えることが困難であった。この問題に対応するために、各変数で適切な分割位置を求める手法を提案する。そして、人工データと実データを用いて提案手法の有効性を検証する。