著者
谷田部 貴大 金川 哲也 鮎貝 崇広
出版者
日本混相流学会
雑誌
混相流 (ISSN:09142843)
巻号頁・発行日
vol.35, no.2, pp.356-364, 2021-06-15 (Released:2021-07-08)
参考文献数
33
被引用文献数
4

Weakly nonlinear (i.e., finite but small amplitude) propagation of plane progressive pressure waves in compressible water flow uniformly containing many spherical gas bubbles is numerically investigated with a special attention to a drag force acting bubbles and translation of bubbles. The gas and liquid phases are flowing with initially independent velocities. Drag force and virtual mass force are introduced as interfacial momentum transports. Translation and spherically symmetric oscillations are considered as bubble dynamics. In this paper, under these assumptions, we numerically solve the KdVB (Korteweg-de Vries-Burgers) equation previously derived by ourselves (Yatabe et al., Phys. Fluids, 33 (2021), 033315) from basic equations based on a two-fluid model. The main results are summarized as follows: (i) The drag force acting on bubbles increases a dissipation effect of waves and drastically changes the phase and amplitude of waves. (ii) Although the translation of bubbles increases the nonlinear effect of waves, its contribution to waveform is quantitatively small. (iii) The effect of the drag force decreases with decreasing the initial void fraction and with increasing the initial bubble radius. That of the translation decreases with decreasing the initial void fraction, and is almost independent of the initial bubble radius. (iv) The spatiotemporal evolution of two type of dissipation effects (i.e., dissipation terms) due to the acoustic radiation and to the drag force is different tendency.
著者
鮎貝 崇広 金川 哲也
出版者
日本混相流学会
雑誌
混相流 (ISSN:09142843)
巻号頁・発行日
vol.34, no.1, pp.158-165, 2020-03-15 (Released:2020-04-02)
参考文献数
13
被引用文献数
7

Oscillation of gas bubbles in a bubbly liquid induces dissipation and dispersion effectsof waves into a nonlinear evolution of pressure waves. Long-range propagation of pressure waves with a moderately small amplitude is described by the KdV-Burgers (KdVB) equation. This paper numerically solves the KdVB equation via a spectral method to predict the nonlinear evolution of waves in bubbly liquids. Focusing on the waveform, and the nonlinear, dissipation and dispersion terms, the following results are obtained: (i) An initially sinusoidal waveform satisfying a periodic boundary condition is firstly distorted due to the nonlinear effect; (ii) Wave distortion is suppressed by increasing the dissipation and dispersion effects; (iii) A break-up due to the dispersion effect appears; (iv) A balance between the nonlinear and dispersion effects is accomplished and then a pulse wave satisfying a feature of soliton is formed. As a result, the initial bubble radius and the initial void fraction strongly contribute the dissipation and dispersion effects, respectively.
著者
亀井 陸史 鮎貝 崇広 金川 哲也
出版者
公益社団法人 土木学会
雑誌
土木学会論文集A2(応用力学) (ISSN:21854661)
巻号頁・発行日
vol.75, no.2, pp.I_499-I_508, 2019 (Released:2020-02-06)
参考文献数
34
被引用文献数
4

多数の球形微細気泡を含む水中において, 波長の長い平面圧力波の弱非線形伝播に粘性と熱伝導性が与える影響を理論的に調べる. 多重尺度法を用いて, 粘性と熱伝導性を考慮した気泡流の基礎方程式系から低周波数の長波の長距離伝播を記述する KdV–Burgers 方程式を導いた. 気泡流全体の粘性と熱伝導性を無視した先行研究(金川ら, 機論 B, 76, 1802, 2010) との対比から, 液相粘性と熱伝導性の影響は散逸性のみに現れ, 気泡内気体の熱力学的過程が非線形, 散逸, 分散の全性質に影響を与えることがわかった. さらに, KdV–Burgers 方程式を数値的に解き, 非線形性, 分散性の順に波形に対して性質が発現することがわかった. 本研究と先行研究の数値解を比較すると, 本研究の方が散逸性と分散性が強いことが波形からも確認できた.