著者
Takahiro Yamashita Akihisa Terakita Yoshinori Shichida
出版者
The Japanese Biochemical Society
雑誌
The Journal of Biochemistry (ISSN:0021924X)
巻号頁・発行日
vol.130, no.1, pp.149-155, 2001 (Released:2008-11-18)
参考文献数
45

G protein-coupled receptors identified so far are classified into at least three major families based on their amino acid sequences. For the family of receptors homologous to rhodopsin (family 1), the G protein activation mechanism has been investigated in detail, but much less for the receptors of other families. To functionally compare the G protein activation mechanism between rhodopsin and metabotropic glutamate receptor (mGluR), which belong to distinct families, we prepared a set of bovine rhodopsin mutants whose second or third cytoplasmic loop was replaced with either the second or third loop of Gi/Go-or Gq-coupled mGluR (mGluR6 or mGluR1). Among these mutants, the mutants in which the second or third loop was replaced with the corresponding loop of mGluR exhibited no G protein activation ability. In contrast, the mutant whose third loop was replaced with the second loop of Gi/Go-coupled mGluR6 efficiently activated Gi but not Gt: this activation profile is almost identical with those of the mutant rhodopsins whose third loop was replaced with those of the Gi/Go-coupled receptors in family 1 [Yamashita et al. (2000) J. Biol. Chem. 275, 34272-34279]. The mutant whose third loop was replaced with the second loop of Gq-coupled mGluR1 partially retained the Gi coupling ability of rhodopsin, which is in contrast to the fact that all the rhodopsin mutants having the third loops of Gq-coupled receptors in family 1 exhibit no detectable Gi activation. These results strongly suggest that the molecular architectures of rhodopsin and mGluR are different, although the G protein activation mechanism involving the cytoplasmic loops is common.