著者
Daisuke KOJIMA Chun-Ho PARK Yusuke SATOH Satoshi INOUE Akira NOGUCHI Toshifumi OYAMAD
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
vol.71, no.3, pp.319-324, 2009 (Released:2009-04-04)
参考文献数
31
被引用文献数
20 27

Fixed rabies viruses (CVS-11 strain) were inoculated intramuscularly to C57BL/6J mice, and the pathomorphological changes of the spinal cord including dorsal root spinal ganglion cells were investigated. At 4 days postinoculation (PI), viral antigens were first detected in the spinal neurons and dorsal root spinal ganglion cells without producing morphological changes. At 5 days PI, mild infiltration of lymphocytes was observed around the central canal, small blood vessels and leptomeninges. Cells positive to anti-Iba1 and anti-GFAP antibodies increased significantly from 3 to 5 days PI, respectively. Microglia changed their morphological forms to be ramified or amoeboid, and astroglia extended their cytoplasm from the leptomeninges to the parenchyma. At 7 days PI, apoptotic cells were found in the spinal cord and dorsal root spinal ganglion using TUNEL. We confirmed that most of T lymphocytes and a minority of microglial cells underwent apoptosis, using a combination of TUNEL and immunostaining with antibodies to viral phosphoprotein, CD3, Iba1 and GFAP. On the other hand, astroglial cells and virus-infected nerve cells were negative against TUNEL and cleaved caspase-3 antibody. These findings indicate that T lymphocytes and microglial cells died by apoptosis, whereas virus-infected nerve cells died by necrosis. This was accompanied by increased numbers and morphological changes of glial cells associated with the pathogenesis of CVS-11 in the C57BL/6J mouse.
著者
Nozomi SHIWA Chikage NAKAJIMA Kazunori KIMITSUKI Daria Llenaresas MANALO Akira NOGUCHI Satoshi INOUE Chun-Ho PARK
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.18-0519, (Released:2018-10-17)
被引用文献数
3

Recently, we reported that follicle-sinus complexes (FSCs) in the muzzle skin are useful for postmortem diagnosis of rabid dogs. Here, we compared the sensitivity and specificity of detecting the viral antigen in the brain and FSCs of 226 suspected rabid dogs, and assessed whether the FSC harbored the virus genome and particles. The viral antigen was detected in 211 of 226 samples with 100% sensitivity and specificity. Viral RNA and particles were observed in the cytoplasm of Merkel cells (MCs). These results suggest that MCs are targets of virus infection and FSCs are useful material for diagnosing rabies.