著者
Ana Maria Huerta-Olalde Alejandra Hernández-García Rodolfo López-Gómez Sylvia Patricia Fernández-Pavía María Guadalupe Zavala-Páramo Rafael Salgado-Garciglia
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.39, no.2, pp.165-171, 2022-06-25 (Released:2022-06-25)
参考文献数
49
被引用文献数
1

Blackberry is an economically important crop in Mexico, and its yield is substantially reduced by gray mold, a disease caused by Botrytis cinerea. One of the means to obtain B. cinerea-resistant plants is gamma irradiation. Shoot tips of in vitro-micropropagated blackberry plants (Rubus fruticosus ‘Tupy’) were irradiated with five doses of Cobalt-60 gamma radiation (0, 15, 30, 45, and 60 Gy) and cultured on Murashige and Skoog basal medium containing 1.0 mg l−1 benzylaminopurine and 0.06 mg l−1 indole-3-butyric acid (MSB medium). After 28 days of culture, survival was evaluated to determine mean lethal dose (LD50), and 200 shoots were further irradiated at the determined LD50 (30.8 Gy). After 28 days, the surviving shoots were micropropagated on MSB medium for 60 days. Non-irradiated shoots were screened for the in vitro selection of resistant B. cinerea, exposing them to different concentrations of sterile culture filtrate of B. cinerea (0, 2, 4, 6, 8, and 10 g l−1) for 28 days to determine mean lethal concentration (LC50), and the irradiated surviving shoots were further exposed to the determined LC50 (4.6 g l−1). Three surviving lines (rfgum5, rfgum6, and rfgum17) that did not present changes compared with the control shoots were micropropagated to obtain plantlets, which were further subjected to in vitro resistance assays using detached leaves inoculated with B. cinerea (1×103 spores ml−1). Plants of rfgum5 and rfgum6 mutant lines were highly resistant and presented similar growth to control plants. Therefore, this methodology is useful to obtain B. cinerea-resistant blackberry plants.
著者
Alejandra Hernández-García Enrique Ambriz-Parra Pablo López-Albarrán José Cruz-de León Rafael Salgado-Garciglia
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.4, pp.409-414, 2021-12-25 (Released:2021-12-25)
参考文献数
43
被引用文献数
1 2

Dalbergia congestiflora Pittier is a woody plant species grown in Mexico and Central America and widely used as timber wood and medicinal material. Since D. congestiflora is an endangered species, an in-vitro micropropagation technique is needed for mass propagation of D. congestiflora plantlets. Nodal segments of D. congestiflora stem cuttings grown in greenhouse conditions were disinfected with an appropriate protocol and in vitro established on Murashige and Skoog medium (MS) supplemented with 0.05 mg l−1 benzylaminopurine (BA). The explants showed 10% contamination with 90% survival, and the initial shoot was regenerated in 90% of them. Axillary buds of 45-day-old initial shoots were cultured on MS containing BA (0, 0.05, 0.1, 0.5, 1, 1.5 and 2 mg l−1) singly or in combination with α-naphthaleneacetic acid (NAA) (0, 0.1, 0.5 and 1 mg l−1). A higher shoot number (9.6 shoots/explant) was obtained on MS with 1 mg l−1 BA and 0.1 mg l−1 NAA. Rooting was investigated using half-strength MS, 2% sucrose and different concentrations of indole butyric acid (IBA) (0, 0.1, 0.5 and 1 mg l−1). After 30 days of culture, developing shoots were elongated and rooted in culture medium without IBA, with production of 3.2 roots/shoot. Micropropagated plantlets of D. congestiflora were successfully transplanted and acclimatized to a mixture of peat moss and perlite (2 : 1) with 100% relative humidity in greenhouse conditions with 80% survival at 30 days of culture. This micropropagation protocol will contribute to the conservation of D. congestiflora, and assure the mass propagation for sustainable usage of this species.