著者
Tao ZHENG Han ZHANG Baohang ZHANG Zonghui CAI Kaiyu WANG Yuki TODO Shangce GAO
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE Transactions on Information and Systems (ISSN:09168532)
巻号頁・発行日
vol.E106.D, no.3, pp.410-418, 2023-03-01 (Released:2023-03-01)
参考文献数
55
被引用文献数
1

Many optimisation algorithms improve the algorithm from the perspective of population structure. However, most improvement methods simply add hierarchical structure to the original population structure, which fails to fundamentally change its structure. In this paper, we propose an umbrellalike hierarchical artificial bee colony algorithm (UHABC). For the first time, a historical information layer is added to the artificial bee colony algorithm (ABC), and this information layer is allowed to interact with other layers to generate information. To verify the effectiveness of the proposed algorithm, we compare it with the original artificial bee colony algorithm and five representative meta-heuristic algorithms on the IEEE CEC2017. The experimental results and statistical analysis show that the umbrellalike mechanism effectively improves the performance of ABC.
著者
Baohang ZHANG Haichuan YANG Tao ZHENG Rong-Long WANG Shangce GAO
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE TRANSACTIONS on Information and Systems (ISSN:09168532)
巻号頁・発行日
vol.E106-D, no.3, pp.365-373, 2023-03-01
被引用文献数
2

The equilibrium optimizer (EO) is a novel physics-based meta-heuristic optimization algorithm that is inspired by estimating dynamics and equilibrium states in controlled volume mass balance models. As a stochastic optimization algorithm, EO inevitably produces duplicated solutions, which is wasteful of valuable evaluation opportunities. In addition, an excessive number of duplicated solutions can increase the risk of the algorithm getting trapped in local optima. In this paper, an improved EO algorithm with a bis-population-based non-revisiting (BNR) mechanism is proposed, namely BEO. It aims to eliminate duplicate solutions generated by the population during iterations, thus avoiding wasted evaluation opportunities. Furthermore, when a revisited solution is detected, the BNR mechanism activates its unique archive population learning mechanism to assist the algorithm in generating a high-quality solution using the excellent genes in the historical information, which not only improves the algorithm's population diversity but also helps the algorithm get out of the local optimum dilemma. Experimental findings with the IEEE CEC2017 benchmark demonstrate that the proposed BEO algorithm outperforms other seven representative meta-heuristic optimization techniques, including the original EO algorithm.