著者
Masaaki Konishi Tomotake Morita Tokuma Fukuoka Tomohiro Imura Shingo Uemura Hiroyuki Iwabuchi Dai Kitamoto
出版者
Japan Oil Chemists' Society
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
vol.67, no.4, pp.489-496, 2018 (Released:2018-04-01)
参考文献数
34
被引用文献数
18 37

We discovered that Candida floricola ZM1502 is capable of selectively producing the promising hydrophilic biosurfactants, acid-form sophorolipids (SLs), from glycerol. However, productivity was very low (approximately 3.5 g L–1) under the initial culture conditions. Here, we describe the design of culture medium for abundant production of acid-form SLs by C. floricola ZM1502 using waste glycerol and hydrophobic substrates in order to develop a method for SL production and disposal of waste glycerol produced by oleo-chemical industries. Urea provided the best nitrogen source for acid-form SL production from glycerol among four nitrogen sources tested [urea, NaNO3, NH4NO3, and (NH4)2SO4]. Among carbon sources we compared, hydrophobic substrates (soybean oil and oleic acid) led to productivities of approximately 20 g L–1, indicating that hydrophobic substrates provided fatty acid moieties for SL production. Addition of olive oil and oleic acid to waste glycerol enhanced acid-form SL production to 42.1 ± 0.9 and 37.5 ± 3.4 g L–1, respectively. To develop a potential industrial process, we explored other suitable hydrophobic substrates for SL production, which were obtained on site from oleo-chemical industries. Alkyl C18 esters (Pastell M-182), along with waste glycerol, increased acid-form SL production to 48.0 ± 3.4 g L–1 over a 7-d period. Furthermore, we demonstrated abundant production of acidic SLs at the mini-jar fermenter scale, obtaining 169 g L–1 over 180 h using a fed-batch cultivation technique. Efficient acid-form SL production by C. floricola could have a great impact on the development of bio-industrial processes using waste glycerol as a substrate.
著者
Makoto Takahashi Dai Kitamoto Yonathan Asikin Kensaku Takara Koji Wada
出版者
公益社団法人 日本油化学会
雑誌
Journal of Oleo Science (ISSN:13458957)
巻号頁・発行日
vol.58, no.12, pp.643-650, 2009 (Released:2009-11-14)
参考文献数
31
被引用文献数
8 43

Aloe vela leaf gel extract (AGE) are widely used as cosmetic and pharmaceutical ingredients because of its versatile skin care properties. In order to enhance the bioavailability of AGE, liposomes encapsulating AGE were prepared and examined for their interfacial and biochemical properties. The liposomes prepared from a soybean lecithin (SLP-WHITE, 1.0 wt%) by the Bangham method gave relatively a good trapping efficiency up to the AGE concentration of 0.5 wt%. The stable liposomes were then prepared from 1.0 wt% of SLP-WHITE and different concentrations of AGE by the mechanochemical method using a homogenizer and microfluidizer. The liposomes obtained from 0.25 wt% of AGE were confirmed to be small unilamellar vesicles with a diameter of less than 200 nm, and remained well dispersed for at least two weeks. The obtained liposomes encapsulating AGE were further examined for the effects on proliferation and type I collagen synthesis in normal human neonatal skin fibroblasts, NB1RGB cells. Liposomal AGE clearly showed higher proliferation rate than that of AGE alone. In addition, compared to the control, liposomal AGE significantly increased the collagen synthesis by 23%, while AGE alone showed a small effect. Liposomal AGE was also assayed for the effect on proliferation in normal human epidermal keratinocytes, NHEK(F) cells. Interestingly, liposomal AGE fractions containing 4 and 20μg/mL of the extract considerably increased the proliferation rate by 77% and 101%, respectively. In contrast, AGE alone fractions containing 4 and 20μg/mL of the extract increased the rate by 41% and 60%, respectively. Accordingly, the bioavailability and skin care properties of AGE will be significantly enhanced by liposome encapsulation, and the present liposomal AGE should have a great potential as an effective skin care formulation.