著者
Ekkapol AKARAPHUTIPORN Eugene C. BWALYA Sangho KIM Takafumi SUNAGA Ryosuke ECHIGO Masahiro OKUMURA
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.20-0091, (Released:2020-07-07)
被引用文献数
3

Pentosan polysulfate (PPS) is a semi-synthetic sulfated polysaccharide compound which has been shown the benefits on therapeutic treatment for osteoarthritis (OA) and has been proposed as a disease modifying osteoarthritis drugs (DMOADs). This study investigated the effects of PPS on cell proliferation, particularly in cell cycle modulation and phenotype promotion of canine articular chondrocytes (AC). Canine AC were treated with PPS (0–80 µg/ml) for 24, 48 and 72 hr. The effect of PPS on cell viability, cell proliferation and cell cycle distribution were analyzed by MTT assay, DNA quantification and flow cytometry. Chondrocyte phenotype was analyzed by quantitative real-time PCR (qPCR) and glycosaminoglycan (GAG) quantification. PPS significantly reduced AC proliferation through cell cycle modulation particularly by maintaining a significantly higher proportion of chondrocytes in the G1 phase and a significantly lower proportion in the S phase of the cell cycle in a concentration- and time-dependent manner. While the proportion of chondrocytes in G1 phase corresponded with the significant downregulation of cyclin-dependent kinase (CDK) 1 and 4. Furthermore, the study confirms that PPS promotes a chondrogenic phenotype of AC through significant upregulation of collagen type II (Col2A1) mRNA and GAG synthesis. The effect of PPS on the inhibition of chondrocyte proliferation while promoting a chondrocyte phenotype could be beneficial in the early stages of OA treatment, which transient increase in proliferative activity of chondrocytes with subsequent phenotypic shift and less productive in an essential component of extracellular matrix (ECM) is observed.
著者
Ekkapol AKARAPHUTIPORN Takafumi SUNAGA Eugene C. BWALYA Ryosuke ECHIGO Masahiro OKUMURA
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.20-0118, (Released:2020-04-30)
被引用文献数
3

This study investigated the effects of culture time on phenotype stability of canine articular chondrocytes (CACs) in non-passaged long-term monolayer culture. Third passage (P3) CACs isolated from four cartilage samples were seeded at three different initial seeding densities (0.2 х 104, 1.0 х 104 and 5.0 х 104 cells/cm2) and maintained in monolayer condition up to 8 weeks without undergoing subculture after confluence. The characteristic changes of chondrocytes during the culture period were evaluated based on the cell morphology, cell proliferation, glycosaminoglycans (GAGs) content, DNA quantification, mRNA expression and ultrastructure of chondrocytes. Chondrocytes maintained under post-confluence condition exhibited a capability to grow and proliferate up to 4 weeks. Alcian blue staining and Dimethylmethylene blue (DMMB) assay revealed that the extracellular matrix (ECM) synthesis was increased in a time-dependent manner from 2 to 8 weeks. The chondrocyte mRNA expression profile was dramatically affected by prolonged culture time, with a significant downregulation of collagen type I, whereas the expression of collagen type II, aggrecan, Sox9 and matrix metalloproteinase 13 (MMP-13) were significantly upregulated. In addition, transmission electron microscopy (TEM) result indicated dilation of rough endoplasmic reticulum (RER) in these long-term monolayer cultured chondrocytes. These findings demonstrate that the chondrocytes phenotype could be partially redifferentiated through the spontaneous redifferentiation process in long-term cultures using standard culture medium without the addition of chondrogenic supplements or tissue-culture scaffolds.
著者
Eugene C. BWALYA HM Suranji WIJEKOON Jing FANG Sangho KIM Kenji HOSOYA Masahiro OKUMURA
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.18-0202, (Released:2018-09-11)
被引用文献数
1

Although chondroinductive growth factors are considered necessary for chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSC), independent and spontaneous chondrogenesis has been previously demonstrated in adult horses, bovine calves and adult human BMSC. Surprisingly, adult canine BMSC under similar culture conditions previously failed to demonstrate chondrogenesis. The present study evaluated independent chondrogenic potential of BMSC sourced from three young dogs in the absence of known chondroinductive factors. BMSC were culture expanded in 10% DMEM up to third passage (P3). At each passage, the phenotype of BMSC was evaluated by RT-PCR gel electrophoresis and qPCR. BMSC exhibited a chondrogenic phenotype in the absence of dexamethasone and TGF-β1 as verified by the expression of Sox-9, type II collagen and aggrecan. Sox-9 was significantly downregulated (P<0.05) from P1–P3 compared to P0 while type II and X collagen, and aggrecan were significantly downregulated at P3 compared to P0. There was a significant (P<0.01) negative correlation between passaging and Sox-9, type II collagen and aggrecan gene expression. These results indicate that independent chondrogenic potential and phenotype retention of BMSC decreases in a passage-dependent pattern. Therefore, caution should be exercised for future experiments evaluating the chondrogenic potential of BMSC after extensive expansion cultures in 10% DMEM.
著者
Suranji WIJEKOON Eugene C. BWALYA Jing FANG Sangho KIM Kenji HOSOYA Masahiro OKUMURA
出版者
公益社団法人 日本獣医学会
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.17-0393, (Released:2017-11-03)
被引用文献数
6

The aim of this study was to investigate osteoclastogenic properties of inflammatory cytokines at different time-points of osteoclastogenesis. Bone marrow-derived macrophages from five healthy dogs were stimulated with the macrophage colony-stimulating factor, receptor activator of nuclear factor-κB ligand and inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-17. Osteoclasts (OC) formation and function were enhanced with TNF-α regardless of temporal differences. But in contrast, IL-1β suppressed the osteoclastogenesis at early phase of the process while upregulating at the late phase. Furthermore, differentiation of OC precursors into OC was suppressed at high concentrations of IL-17. Collectively, the results revealed that suppressing TNF-α would be a promising strategy to inhibit inflammation-associated bone destruction in dogs.
著者
Eugene C. BWALYA Sangho KIM Jing FANG H. M. Suranji WIJEKOON Kenji HOSOYA Masahiro OKUMURA
出版者
公益社団法人 日本獣医学会
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
vol.79, no.7, pp.1182-1190, 2017 (Released:2017-07-07)
参考文献数
44
被引用文献数
11

Mesenchymal stem cells (MSC) are a potential alternative source of differentiated chondrocytes for cartilage tissue regeneration and repair of osteoarthritic (OA) joints. We investigated the effects of pentosan polysulfate (PPS) and polysulfated glycosaminoglycan (PSGAG) on chondrogenesis of canine bone marrow-derived mesenchymal stem cells (cBMSC) in alginate and micromass cultures (MMC). Chondrogenic differentiation medium (CDM) was supplemented with PPS or PSGAG at concentrations of 0 (positive control; PC), 1, 3 and 5 µg/ml. 10% DMEM was used as negative control. Chondrocyte phenotype was analyzed by quantitative real-time PCR (qPCR) for alginate cultures and Alcian blue staining for proteoglycan (PG) synthesis for MMC. In alginate culture, PPS and PSGAG showed no significant effect on type II collagen, aggrecan and HIF-2α mRNA expression. PPS had no significant effect on type I collagen whereas PSGAG significantly upregulated (P<0.05) it at all concentrations relative to other treatments. PPS demonstrated a dose-dependent inhibitory effect on type X collagen mRNA with significant inhibition observed at 5 µg/ml compared to the NC. PSGAG showed an inverse effect on type X collagen with 1 µg/ml significantly inhibiting its expression while increase in the concentration correspondingly increased type X collagen expression. In MMC, PPS significantly enhanced chondrogenesis and PG deposition whereas PSGAG inhibited chondrogenesis and promoted a fibrocartilage-like phenotype with reduced PG deposition. While PPS enhances chondrogenesis of cBMSC in MMC, the response of MSC to chondroinductive factors is culture system-dependent and varies significantly between alginate and MMC.
著者
Eugene C. BWALYA Sangho KIM Jing FANG H.M. Suranji WIJEKOON Kenji HOSOYA Masahiro OKUMURA
出版者
公益社団法人 日本獣医学会
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.17-0084, (Released:2017-05-27)
被引用文献数
11

Mesenchymal stem cells (MSC) are a potential alternative source of differentiated chondrocytes for cartilage tissue regeneration and repair of osteoarthritic (OA) joints. We investigated the effects of pentosan polysulfate (PPS) and polysulfated glycosaminoglycan (PSGAG) on chondrogenesis of canine bone marrow-derived mesenchymal stem cells (cBMSC) in alginate and micromass cultures (MMC). Chondrogenic differentiation medium (CDM) was supplemented with PPS or PSGAG at concentrations of 0 (positive control; PC), 1, 3 and 5 μg/ml. 10% DMEM was used as negative control. Chondrocyte phenotype was analyzed by quantitative real-time PCR (qPCR) for alginate cultures and Alcian blue staining for proteoglycan (PG) synthesis for MMC. In alginate culture, PPS and PSGAG showed no significant effect on type II collagen, aggrecan and HIF-2α mRNA expression. PPS had no significant effect on type I collagen whereas PSGAG significantly upregulated (P<0.05) it at all concentrations relative to other treatments. PPS demonstrated a dose-dependent inhibitory effect on type X collagen mRNA with significant inhibition observed at 5 μg/ml compared to the NC. PSGAG showed an inverse effect on type X collagen with 1 μg/ml significantly inhibiting its expression while increase in the concentration correspondingly increased type X collagen expression. In MMC, PPS significantly enhanced chondrogenesis and PG deposition whereas PSGAG inhibited chondrogenesis and promoted a fibrocartilage-like phenotype with reduced PG deposition. While PPS enhances chondrogenesis of cBMSC in MMC, the response of MSC to chondroinductive factors is culture system-dependent and varies significantly between alginate and MMC.