著者
S. HERNÁNDEZ-AQUINO LUIS ALBERTO MIRANDA-ROMERO HIROSHI FUJIKAWA EMA DE JESÚS MALDONADO-SIMÁN BALDOMERO ALARCÓN-ZUÑIGA
出版者
The Society for Antibacterial and Antifungal Agents, Japan
雑誌
Biocontrol Science (ISSN:13424815)
巻号頁・発行日
vol.24, no.4, pp.185-192, 2019 (Released:2019-12-26)
参考文献数
55
被引用文献数
16

Lactic Acid Bacteria (LAB) are generally recognized as safe. It has been used to increase the shelf-life of fermented products, and its antimicrobial action is based on the metabolites secretions, such as lactic acid, hydrogen peroxide, reuterin, bacteriocins and the like-bacteriocins substances. It has been proven that LAB are able to inhibit deteriorating bacteria of raw meat, but improper handling of live cultures could lead to spoilage. So, the use of their bacteriocins, small antimicrobial peptides, could be an alternative. Besides reducing the number of spoilage bacteria, it seeks to inhibit pathogenic bacteria such as Salmonella, enterohemorrhagic Escherichia coli and Listeria. The food industry uses few bacteriocins and now bacterial resistance has been reported. For that reason, the search of novel bacteriocins produced by LAB is a priority. Moreover, the natural microbiota of meat could be a reservoir of LAB.
著者
Hiroshi Fujikawa
出版者
公益社団法人 日本食品衛生学会
雑誌
食品衛生学雑誌 (ISSN:00156426)
巻号頁・発行日
vol.62, no.2, pp.37-43, 2021-04-25 (Released:2021-04-22)
参考文献数
29

Microbial risk assessment in food safety is a valuable tool to reduce the risks of infection by pathogens. The dose-response relation is aimed to establish the relationship between the dose of a pathogen that populations are exposed to and the probability of the adverse health effect by the pathogen. Among many dose–response models ever proposed, the exponential and beta-Poisson models have been internationally applied, but the decision on which model is selected between them solely depends on the goodness of fit to specific data sets. On the other hands, the log-logistic model, one of the alternative models, has been little studied on the dose–response relation. In the present study, thus, the application of the log-logistic model to dose–response relation was studied with hypothetical and experimental data sets of infection (or death), comparing to the above two models. Here the experimental data sets were for pathogenic organisms such as pathogenic Escherichia coli, Listeria monocytogenes, and Cryptosporidium pavrum. Consequently, this model successfully fit to those data sets in comparison to the two models. These results suggested that log-logistic model would have the potential to apply to the dose–response relation, similar to the exponential and beta-Poisson models.