著者
V. CHANDRASEKAR Haonan CHEN Brenda PHILIPS
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-015, (Released:2018-01-12)
被引用文献数
42

The Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Dallas-Fort Worth (DFW) Urban Demonstration Network consists of a combination of high resolution X-band radar network and a National Weather Service S-band radar system (i.e., KFWS radar). Based primarily on these radars, CASA has developed end-to-end warning system that includes sensors, software architecture, products, data dissemination and visualization, and user decision making. This paper presents a technical summary of the DFW radar network for urban weather disaster detection and mitigation, from the perspective of tracking and warning of hails, tornadoes, and floods. Particularly, an overview of the X-band radar network design tradeoffs is presented. The architecture and associated algorithms for various product systems are described, including the real-time hail detection system, the multiple Doppler vector wind retrieval system, and the high-resolution quantitative precipitation estimation system. Sample products in the presence of high wind, tornado, hail, and flash flood are provided, and the systems’ performance is demonstrated through cross validation with ground observations and weather reports.
著者
Robert CIFELLI V. CHANDRASEKAR Haonan CHEN Lynn E. JOHNSON
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-016, (Released:2018-01-12)
被引用文献数
63

An X-band radar system was deployed in Santa Clara, CA from February through May 2016 to support the National Weather Service in the event of potential flooding during one of the largest El Niños on record and to provide better understanding of rainfall processes occurring in the Bay Area. The system was also used to provide high quality precipitation estimation (quantitative precipitation estimation - QPE) for Santa Clara’s urban hydrologic modeling system. Although the Bay Area has coverage from the NEXRAD operational radar network, the combination of topographic influences and proximity to a maritime environment provide unique QPE challenges in this urban region. The X-band radar provided high quality rainfall estimates that performed better than NEXRAD, demonstrating the added value of the X-band system. High resolution rainfall monitoring systems in urban regions also provide a host of benefits across different sectors of the economy, including flood damage mitigation, water quality, water supply, and transportation.