著者
SAITO Kazuo KUNII Masaru ARAKI Kentaro
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-027, (Released:2018-02-11)
被引用文献数
2

Local heavy rainfall of about 100 mm h-1 occurred in Tokyo and Kanagawa Prefecture on 26 August 2011. This rain was brought by a mesoscale convective system (MCS) that developed near a stationary front that slowly moved southward. In an analysis using geostationary multi-purpose satellite rapid scan images and dense automated weather station networks, development of the MCS occurred after the merging of sea breezes from the east (Kashima-nada) and the south (Tokyo Bay). Numerical experiments by the Japan Meteorological Agency (JMA) nonhydrostatic model (NHM) with horizontal resolutions of 10 km and 2 km using mesoscale 4D-VAR analysis of JMA for initial conditions tended to predict the position of intense rainfall areas west of observed positions. In the mesoscale ensemble forecast using perturbations from JMA’s one-week global ensemble prediction system (EPS) forecast, some ensemble members showed enhanced precipitation around Tokyo, but false precipitation areas appeared north of the Kanto and Hokuriku Districts. As an attempt to improve the model forecast, we modified the model, reducing the lower limit of subgrid deviation of water vapor condensation to diagnose the cloudiness for radiation. In the modified model simulation, surface temperatures around Tokyo increased by about 1°C and the position of the intense precipitation was improved, but the false precipitation areas in the Hokuriku District were also enhanced in the ensemble member which brought a better forecast than the control run. We also conducted ensemble prediction using a singular vector method based on NHM. One of the ensemble members unstabilized the lower atmosphere on the windward side of the Kanto District and suppressed the false precipitation in the Hokuriku District, and observed characteristics of the local heavy rainfall were well reproduced by NHM with a horizontal resolution of 2 km. A conceptual model of the initiation of deep convection by the formation of a low-level convergence zone succeeding merging of the two sea breezes from the east and south is proposed based on observations, previous studies, and numerical simulation results. In this event, the northerly ambient wind played an important role on the occurrence of the local heavy rainfall around Tokyo by suppressing the northward intrusion of the sea breeze from the south.
著者
Seiji Yukimoto Kunihiko Kodera Rémi Thiéblemont
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.13, pp.53-58, 2017 (Released:2017-04-04)
参考文献数
29

A delayed response of the winter North Atlantic oscillation (NAO) to the 11-year solar cycle has been observed and modeled in recent studies. However, the mechanisms creating this 2-4-year delay to the solar cycle have still not been well-understood. This study examines the effects of the 11-year solar cycle and the resulting modulation in the strength of the winter stratospheric polar vortex. A coupled atmosphere–ocean general circulation model is used to simulate these effects by introducing a mechanistic forcing in the stratosphere. The intensified stratospheric polar vortex is shown to induce positive and negative ocean temperature anomalies in the North Atlantic Ocean. The positive ocean temperature anomaly migrated northward and was amplified when it approached an oceanic frontal zone approximately 3 years after the forcing became maximum. This delayed ocean response is similar to that observed. The result of this study supports a previous hypothesis that suggests that the 11-year solar cycle signals on the Earth's surface are produced through a downward penetration of the changes in the stratospheric circulation. Furthermore, the spatial structure of the signal is modulated by its interaction with the ocean circulation.
著者
Meiji Honda Akira Yamazaki Akira Kuwano-Yoshida Yusuke Kimura Katsushi Iwamoto
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.12, pp.259-264, 2016 (Released:2016-09-22)
参考文献数
17
被引用文献数
1

Synoptic conditions causing an extreme snowfall event in the Kanto-Koshin district occurred on 14-15 February 2014 are investigated through a reanalysis data set. Associated with a developing cyclone passing the south coast of Japan, persistent snowfall exceeding more than 24 hours over the Kofu-Basin resulted in 112 cm snowfall at Kofu. Slow progress of the south-coast cyclone also contributed to the long snowfall duration. An anticyclone developed over the northern Japan (∼1032 hPa) also contributed to this extreme snowfall. This anticyclone brought warm and moist air inflow by southeasterlies forming moisture flux convergence over the Kanto-Koshin district on the morning of 14th when snowfall started in the Koshin district in spite that the south-coast cyclone was located to the south of Kyushu. Further, ageostrophic cold northerlies with high pressure extension from the anticyclone by “cold-air damming (CAD)” would suppress warming with the approaching south-coast cyclone and keep snowfall until the morning of 15th. In other four heavy snowfall events at Kofu, snowfall durations were almost 12 hours. Although anticyclone to the north and CAD were identified in each case, the moisture transport from the southeast was not evident and moisture flux convergence was not formed earlier.
著者
Masatake E. Hori Kazuhiro Oshima
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.69-73, 2018 (Released:2018-06-26)
参考文献数
15

We use two groups of 100-member ensemble AGCM experiment to investigate the robustness and probabilistic nature of the Warm Arctic/Cold Eurasian (WACE) pattern with or without strong warming SST trend and sea-ice reduction. Model ensembles successfully simulate a distribution of trend coefficients close to that of observation. Results show that the recent trend in WACE pattern is driven by the warming of the Arctic SST, but the pattern itself is not amplified between the warming and non-warming experiment and cannot explain the current cooling trend of the mid-latitudes. We argue that the difference in sea-ice condition regulates the more extreme cases of the pattern thereby contributing to the positive trend in WACE pattern similar to that of observation.
著者
Hironobu IWABUCHI Nurfiena Sagita PUTRI Masanori SAITO Yuka TOKORO Miho SEKIGUCHI Ping YANG Bryan A. BAUM
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.96B, pp.27-42, 2018 (Released:2018-03-16)
参考文献数
35

An algorithm for retrieving the macroscopic, physical, and optical properties of clouds from thermal infrared measurements is applied to the Himawari-8 multiband observations. A sensitivity study demonstrates that the addition of the single CO2 band of Himawari-8 is effective for the estimation of cloud top height. For validation, retrieved cloud properties are compared systematically with collocated active remote sensing counterparts with small time lags. While retrievals agree reasonably for single-layer clouds, multilayer cloud systems with optically thin upper clouds overlying lower clouds are the major source of error in the present algorithm. Validation of cloud products is critical for identifying the characteristics, advantages, and limitation of each product and should be continued in the future.  As an application example, data are analyzed for eight days in the vicinity of the New Guinea to study the diurnal cycle of the cloud system. The present cloud property analysis investigates cloud evolution through separation of different cloud types and reveals typical features of diurnal cycles related to the topography. Over land, middle clouds increase from 0900 to 1200 local solar time (LST), deep convective clouds develop rapidly during 1200-1700 LST with a subsequent increase in cirrus and cirrostratus cloud amounts. Over the ocean near coastlines, a broad peak of convective cloud fraction is seen in the early morning. The present study demonstrates the utility of frequent observations by Himawari-8 for life cycle study of cloud systems, owing to the ability to capture their continuous temporal variations.
著者
YOSHIDA Mayumi KIKUCHI Maki NAGAO Takashi M. MURAKAMI Hiroshi NOMAKI Tomoyuki HIGURASHI Akiko
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-039, (Released:2018-04-15)

We develop a common retrieval algorithm of aerosol properties such as aerosol optical thickness, single-scattering albedo, and Ångström exponent for various satellite sensors over both land and ocean. The three main features of this algorithm are as follows: (1) automatic selection of the optimum channels for aerosol retrieval by introducing a weight for each channel to the object function, (2) setting common candidate aerosol models over land and ocean, and (3) preparation of lookup tables for every 1 nm in the range from 300 to 2500 nm of wavelength and weighting the radiance using the response function for each sensor. This method was applied to the Advanced Himawari Imager (AHI) on board the Japan Meteorological Agency’s geostationary satellite Himawari-8, and the results depicted an approximately continuous estimate of aerosol optical thickness over land and ocean. Further, the aerosol optical thickness estimated using our algorithm was generally consistent with the products from Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET). Additionally, we applied our algorithm to MODIS on board the Aqua satellite and then compared the retrieval results to those that were obtained using AHI. The comparisons of the aerosol optical thickness retrieved from different sensors with different viewing angles on board the geostationary and polar-orbiting satellites suggest an underestimation of aerosol optical thickness at the backscattering direction (or overestimated in other directions). The retrieval of aerosol properties using a common algorithm allows us to identify a weakness in the algorithm, which includes the assumptions in the aerosol model (e.g. sphericity or size distiribution).
著者
UEDA Hiroaki MIWA Kana KAMAE Youichi
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-044, (Released:2018-05-14)

The response of tropical cyclone (TC) activity to the El Niño-Southern Oscillation (ENSO) and coherent sea surface temperate (SST) anomaly in the Indian Ocean (IO) is investigated with a particular focus on the decaying phase of El Niño. The TC anomalies are obtained from the database for Policy Decision making for Future climate change (d4PDF). This dataset is based on 100-member ensemble simulations for the period of 1951-2010 by use of the state-of-the-art atmospheric general circulation model (AGCM) forced with observed SST as well as the historical radiative forcing. AGCM utilized in the d4PDF is the Meteorological Research Institute Atmospheric General Circulation Model with about 60km horizontal resolution. Our analysis reveals a prolonged decrease in TC frequency over the tropical western Pacific during the post El Niño years until the boreal fall. Dominance of anomalous anticyclone (AAC) over the western Pacific induced by the delayed warming in the tropical Indian Ocean is the main factor for the suppressed TC activity rather than the local SST change. In contrast, the TC number over the South China Sea tends to increase during the post-El Niño fall (September to November). The physical reason can be ascribed to the weakening of AAC associated with the termination of IO warming. Thus we demonstrate that the effect of the IO warming should be taken into account when the ENSO is considered as an environmental factor for predicting TC activity.
著者
Keiichi ISHIOKA
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.96, no.2, pp.241-249, 2018 (Released:2018-03-27)
参考文献数
18

A new recurrence formula to calculate the associated Legendre functions is proposed for efficient computation of the spherical harmonic transform. This new recurrence formula makes the best use of the fused multiply–add (FMA) operations implemented in modern computers. The computational speeds in calculating the spherical harmonic transform are compared between a numerical code in which the new recurrence formula is implemented and another code using the traditional recurrence formula. This comparison shows that implementation of the new recurrence formula contributes to a faster transform. Furthermore, a scheme to maintain the accuracy of the transform, even when the truncation wavenumber is huge, is also explained.
著者
Tetsuya Takemi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.ii-iii, 2018 (Released:2018-01-25)
参考文献数
2

The Editorial Committee of Scientific Online Letters on the Atmosphere (SOLA) gives The SOLA Award to outstanding paper(s) published each year. I am pleased to announce that The SOLA Award in 2017 is going to be presented to the paper by Dr. Hiroaki Miura, entitled with “Coupling the hexagonal B1-grid and B2-grid to avoid computational mode problem of the hexagonal ZM-grid” (Miura 2017), and to the paper by Dr. Daisuke Goto et al., entitled with “Vertical profiles and temporal variations of greenhouse gases in the stratosphere over Syowa Station, Antarctica” (Goto et al. 2017).
著者
Fusako Isoda Shinsuke Satoh Tomoo Ushio
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.64-68, 2018 (Released:2018-06-23)
参考文献数
15

On 26 July 2012, localized rainfall from four isolated convective cells was observed by the Phased Array Weather Radar (PAWR) located in Osaka, Japan. The PAWR can observe fine three-dimensional features of precipitation every 30 seconds. In this paper, we investigated the evolution of localized isolated convective cells using the PAWR data. The first echoes appeared at around 5 km altitude, and light rain (25 dBZ) near the ground started in 3 to 5 minutes after the first echo. Heavy rain (50 dBZ) started in 9 to 15 minutes after the first echo. The lifespan of four convective cells was from 40 to 70 minutes.The reflectivity centroid over 25 dBZ (C25) of the first echo in developing stage descended first and then ascended within the several minutes. The behavior of the first echo motion looked complicated and it is difficult to be explained by the traditional conceptual model. In dissipation stage, the descending C25 was stopped by an alternation of precipitation core.
著者
Hirokazu Endo Akio Kitoh Hiroaki Ueda
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.57-63, 2018 (Released:2018-04-28)
参考文献数
39

Recent studies indicate that the view of a general weakening of the monsoon circulation in a warmer climate cannot be simply applied in the Asian monsoon regions. To understand the Asian summer monsoon response to global warming, idealized multi-model experiments are analyzed. In the coupled model response to increased CO2, monsoon westerlies in the lower troposphere are shifted poleward and slightly strengthened over land including South Asia and East Asia, while the tropical easterly jet in the upper troposphere are broadly weakened. The different circulation responses between the lower and upper troposphere is associated with vertically opposite changes in the meridional temperature gradient (MTG) between the Eurasian continent and the tropical Indian Ocean, with a strengthening (weakening) in the lower (upper) troposphere. Atmospheric model experiments to separate the effects of CO2 radiative forcing and sea surface temperature warming reveal that the strengthened MTG in the lower troposphere is explained by the CO2 forcing. On a global perspective, CO2-induced enhancement of the land–sea thermal contrast and resultant circulation changes are the most influential in the South Asian monsoon. This study emphasizes an important role of the land warming on the Asian monsoon response to global warming.
著者
Stéphane BÉLAIR Sylvie LEROYER Naoko SEINO Lubos SPACEK Vanh SOUVANLASSY Danahé PAQUIN-RICARD
出版者
Meteorological Society of Japan
雑誌
Journal of the Meteorological Society of Japan. Ser. II (ISSN:00261165)
巻号頁・発行日
pp.2018-011, (Released:2017-12-21)
被引用文献数
3

Heavy precipitation fell over Tokyo in the afternoon of 26 August 2011, leading to flooding and major disruptions for the population, businesses, and authorities. Over 150 mm of precipitation was observed over the city center on that day, with hourly accumulations reaching values as high as 90 mm in late afternoon. Numerical forecasts of this case were performed with a 250-m grid spacing version of the Global Environmental Multi-scale (GEM) model in the context of the Tokyo Metropolitan Area Convection Study (TOMACS). Although initialized only from a global 25-km upper-air analysis, results indicate that GEM is able to produce the intense precipitation over Tokyo at about the right location and time. A sensitivity test in which the urban surface scheme is switched off and replaced with tall grass suggests that the urban environment might have had considerable impact on precipitation intensity, but not on its occurrence or its timing. Based on diagnostics from the GEM integrations, the increased intensity of precipitation seems more related to an enhancement of lateral inflow of low-level moist static energy from Tokyo Bay than to augmented surface fluxes of heat and humidity from the city itself. The existence of low-level bands with locally high values of equivalent potential temperature indicates that the additional moist energy is distributed unevenly through the Tokyo area, an aspect of the simulation which is speculated to have directly contributed to the increase in precipitation intensity over the city.
著者
FUJIBE Fumiaki
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-021, (Released:2018-01-23)

Climatological features of surface air temperature variations on time scales of a few minutes to one hour were examined using one-minute data, spanning a four-year period, from 917 automated stations in Japan. The temperature time series was spectrally analyzed after the application of a Gaussian high-pass filter, and the variances with periods of 64 minutes or less were statistically analyzed as sub-hourly temperature variations. The result obtained shows that daytime temperature variation is observed throughout the country with relatively small regional differences. The amplitudes of daytime temperature variations were larger during spring and summer than those during autumn and winter, and under high temperature and sunny weather than under low temperature, no sunshine, and precipitation. A cross spectral analysis of temperature and wind speed reveals that temperature peaks tend to coincide with or lag behind wind speed minima. The variation is likely to correspond to the convective motion in the mixing layer. On the other hand, the intensity of nighttime temperature variation showed a large amount of scatter among stations, with exceptionally large variations during winter at some stations in northern and eastern Japan. Nighttime temperature variation tends to be in-phase with wind speed variation, with longer periods than daytime temperature variation, and is more intense under low temperature and low wind speed than under high temperature, high wind speed, and precipitation. Stations with large winter nighttime temperature variations tend to be located on a col or a slope, where the surface inversion layer is likely to be easily disturbed by any kind of atmospheric motion.
著者
Tetsuya Kawano Ryuichi Kawamura
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.1-5, 2018 (Released:2018-01-18)
参考文献数
21

To investigate the influence of the distribution of sea ice in the Sea of Okhotsk on the behavior of a severe snowstorm, which occurred in Hokkaido, Japan, on 2 March 2013 and which was associated with an explosive cyclone, three WRF simulations with realistic, reduced, and enhanced sea ice-cover were carried out. A comparison among these experiments reveals that the extent of the sea ice influenced low-level temperatures and winds to the rear of the cyclone center during the development of the explosive cyclone over the Sea of Okhotsk. Sea ice insulates the ocean from heat exchange with the atmosphere. As a result, when the Okhotsk sea ice extent reaches Hokkaido Island, cold air masses from the north traverse the island without first being heated by the ocean. The consequent temperature reduction produces a low-level higher pressure region to the rear of the cyclone center. As a result, a large geopotential gradient is generated just to the rear of the cyclone center, and low-level winds are intensified within this region. Therefore, the Okhotsk sea ice extent reaching Hokkaido Island plays a significant role in lowering temperatures and intensifying winds in the island.
著者
MURAZAKI Kazuyo TSUJINO Hiroyuki MOTOI Tatsuo KURIHARA Kazuo
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.93, no.2, pp.161-179, 2015
被引用文献数
1

We performed a 20-year numerical experiment over the period 1985 to 2004 using a high-resolution North Pacific Ocean General Circulation Model (NPOGCM) and a 20 km-resolution regional climate model (RCM20) to clarify the impact of the Kuroshio large meander (LM) on the climate around Japan. The NPOGCM reproduced the two primary quasi-stationary states, straight path (SP), and large meander (LM), although the periods during which each state prevailed differed from those indicated in the observational data. The NPOGCM result also showed that the Kuroshio LM causes a cold sea surface temperature anomaly to the south of the Pacific coast of the central Japan. Using the result as a lower boundary condition, a continuous numerical integration was performed by the RCM20. An 8-year composite analysis of the atmospheric circulations of the RCM20 simulation for the Kuroshio LM and SP showed that, in both winter and summer, substantial decreases in the upward surface turbulent heat flux, the frequency of precipitation, and the frequency of steep horizontal gradients in equivalent potential temperature over the ocean are caused by the cold sea surface temperature anomaly. Similar effects are evident over the land area of Japan, although they are less intense, at most 20-50 % of magnitude over the cold sea surface temperature anomaly area, and limited to the coastal region on the Pacific Ocean side in the central part of the country.
著者
Sueng-Pil Jung Tae-Yong Kwon So-Ra In Seon-Jeong Kim Geon-Tae Kim Jae-Kwan Shim Chang-Geun Park Byoung-Choel Choi
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.86-90, 2018 (Released:2018-07-12)
参考文献数
23

The kinetic energy associated with Chang-ma periods was investigated using rawinsonde data from Korea during 2013-2015. Changes in kinetic energy (which is defined in terms of storm relative helicity, SRH) were more pronounced than changes in thermal energy (which is defined in terms of convective available potential energy, CAPE) during precipitation. The median value of SRH increased by 14, 125, and 185 m2 s−2 in no-rain, weak-rain (< 5 mm 3 hr−1), and strong-rain (≥ 5 mm 3 hr−1) time periods, respectively. However, the values of CAPE remained below 100 J kg−1 regardless of the rainfall intensity. Moreover, the correlation coefficients (R) between SRH and precipitation amount about 0.4 with 99% confidence level. In addition, we used two vectors constituting the SRH (storm motion vector and horizontal wind vector) to determine the reason for the SRH differences. The change in the y-components of the horizontal wind vector at low levels (850-750 hPa) was determined to be closely related to SRH. The increase in SRH during the precipitation periods was therefore determined to be due to the low-level southerly wind. Based on these results, we conclude that SRH can be used not only to predict mesoscale storms but also to forecast precipitation in the early summer monsoon season in Korea.
著者
Minghao Yang Ruiting Zuo Liqiong Wang Xiong Chen Yanke Tan Xin Li
出版者
Meteorological Society of Japan
雑誌
SOLA (ISSN:13496476)
巻号頁・発行日
vol.14, pp.74-78, 2018 (Released:2018-06-26)
参考文献数
18

Based on 55-yr output data from the historical runs of twelve Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) models and a NCEP (National Centers for Environmental Prediction) reanalysis, we evaluate the capability of those models to simulate the interannual variability of the winter North Atlantic storm track (WNAST). It is found that the multi-model ensemble (MME) is better than any single models in reflecting the spatial distribution of WNAST interannual variability and has the smallest root mean square error (RMSE). The strengths of the interannual variations in half of the models are universally weaker than in the NCEP reanalysis. In addition, the simulated interannual variability vary largely among these models in (55°N–65°N, 35°W–0°). MPI-ESM-LR, FGOALS-s2 and MRI-CGCM3 have relatively better abilities than other models to reflect the interannual variability of WNAST strength, longitude and latitude indices respectively. However, the interannual variability of WNAST longitude and latitude indices (strength index) are (is) overestimated (underestimated) in MME.
著者
TAKAHASHI Hiroshi G. DADO Julie Mae B.
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-031, (Released:2018-03-09)

We offer a new perspective on a relationship between sea surface temperature (SST) over the windward region of the Philippines and rainfall in the western Philippines during the Asian summer monsoon season, which has been known as the negative correlation, using observational daily SST, rainfall, and atmospheric circulation datasets. This study focuses on the local SST effect rather than the remote effect. A warmer local SST results in greater rainfall over the western Philippines under similar monsoon westerlies conditions, particularly during moderate and relatively stronger monsoon regimes. This result is obtained after selecting only the moderate or relatively stronger monsoon days, because the positive effect of SST on rainfall is masked by the apparent negative correlation between SST and rainfall. The warmer SSTs being associated with less rainfall correspond to weaker cooling by weaker monsoon westerlies and the cooler SSTs being associated with more rainfall correspond to stronger cooling by stronger monsoon westerlies. The cooler SSTs are the result of stronger monsoon cooling and are not the cause of the greater rainfall, which is the apparent statistical relationship. This also implies that the monsoon westerly is the primary driver of the variation in rainfall in this region. We conclude that the local SST makes a positive contribution toward rainfall, although it does not primarily control rainfall. This conclusion can be applicable to coastal regions where, climatologically, rainfall is controlled by winds from the ocean.