著者
Jun KIMURA Hauke HUSSMANN Shunichi KAMATA Koji MATSUMOTO Jürgen OBERST Gregor STEINBRÜGGE Alexander STARK Klaus GWINNER Shoko OSHIGAMI Noriyuki NAMIKI Kay LINGENAUBER Keigo ENYA Kiyoshi KURAMOTO Sho SASAKI
出版者
THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
雑誌
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN (ISSN:18840485)
巻号頁・発行日
vol.17, no.2, pp.234-243, 2019 (Released:2019-03-04)
参考文献数
50
被引用文献数
3

Laser altimetry is a powerful tool for addressing the major objectives of planetary physics and geodesy. Through measurements of distances between a spacecraft and the surface of the planetary bodies, it can be used to determine the global shape and radius: global, regional, and local topography: tidal deformation: and rotational states including physical librations. Laser altimeters have been applied in planetary explorations of the Moon, Mars, Mercury, and the asteroids Eros, and Itokawa. The JUpiter Icy Moons Explorer (JUICE), led by European Space Agency (ESA), has started development to explore the emergence of habitable worlds around gas giants. The Ganymede Laser Altimeter (GALA) will be the first laser altimeter for icy bodies, and will measure the shape and topography of the large icy moons of Jupiter, (globally for Ganymede, and using flyby ground-tracks for Europa and Callisto). Such information is crucial for understanding the formation of surface features and can tremendously improve our understanding of the icy tectonics. In addition, the GALA will infer the presence or absence of a subsurface ocean by measuring the tidal and rotational responses. Furthermore, it also improves the accuracy of gravity field measurements reflecting the interior structure, collaborating with the radio science experiment. In addition to range measurements, the signal strength and the waveform of the laser pulses reflected from the moon's surface contain information about surface reflectance at the laser wavelength and small scale roughness. Therefore we can infer the degrees of chemical and physical alterations, e.g., erosion, space weathering, compaction and deposition of exogenous materials, through GALA measurements without being affected by illumination conditions. JUICE spacecraft carries ten science payloads including GALA. They work closely together in a synergistic way with GALA being one of the key instruments for understanding the evolution of the icy satellites Ganymede, Europa, and Callisto.
著者
Jun KIMURA Hauke HUSSMANN Shunichi KAMATA Koji MATSUMOTO Jürgen OBERST Gregor STEINBRÜGGE Alexander STARK Klaus GWINNER Shoko OSHIGAMI Noriyuki NAMIKI Kay LINGENAUBER Keigo ENYA Kiyoshi KURAMOTO Sho SASAKI
出版者
THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
雑誌
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN (ISSN:18840485)
巻号頁・発行日
pp.17.234, (Released:2019-01-31)
参考文献数
50
被引用文献数
3

Laser altimetry is a powerful tool for addressing the major objectives of planetary physics and geodesy. Through measurements of distances between a spacecraft and the surface of the planetary bodies, it can be used to determine the global shape and radius: global, regional, and local topography: tidal deformation: and rotational states including physical librations. Laser altimeters have been applied in planetary explorations of the Moon, Mars, Mercury, and the asteroids Eros, and Itokawa. The JUpiter Icy Moons Explorer (JUICE), led by European Space Agency (ESA), has started development to explore the emergence of habitable worlds around gas giants. The Ganymede Laser Altimeter (GALA) will be the first laser altimeter for icy bodies, and will measure the shape and topography of the large icy moons of Jupiter, (globally for Ganymede, and using flyby ground-tracks for Europa and Callisto). Such information is crucial for understanding the formation of surface features and can tremendously improve our understanding of the icy tectonics. In addition, the GALA will infer the presence or absence of a subsurface ocean by measuring the tidal and rotational responses. Furthermore, it also improves the accuracy of gravity field measurements reflecting the interior structure, collaborating with the radio science experiment. In addition to range measurements, the signal strength and the waveform of the laser pulses reflected from the moon's surface contain information about surface reflectance at the laser wavelength and small scale roughness. Therefore we can infer the degrees of chemical and physical alterations, e.g., erosion, space weathering, compaction and deposition of exogenous materials, through GALA measurements without being affected by illumination conditions. JUICE spacecraft carries ten science payloads including GALA. They work closely together in a synergistic way with GALA being one of the key instruments for understanding the evolution of the icy satellites Ganymede, Europa, and Callisto.
著者
Hiroshi ARAKI Ko ISHIBASHI Noriyuki NAMIKI Hirotomo NODA Masanori KOBAYASHI Keigo ENYA Masanobu OZAKI Takahide MIZUNO Yoshifumi SAITO Kazuyuki TOUHARA Shoko OSHIGAMI Shingo KASHIMA Jun KIMURA Shingo KOBAYASHI Gregor STEINBRUEGGE Alexander STARK Christian ALTHAUS Simone Del TOGNO Kay LINGENAUBER Hauke HUSSMANN
出版者
THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
雑誌
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN (ISSN:18840485)
巻号頁・発行日
vol.17, no.2, pp.150-154, 2019 (Released:2019-03-04)
参考文献数
10
被引用文献数
1

GALA (GAnymede Laser Altimeter) is one of the payload instruments of the JUICE (JUpiter ICy moons Explorer) project to be launched in 2022 to the Jovian icy moons Ganymede, Europa, and Callisto. GALA is developed through an international collaboration between Germany, Japan, Switzerland, and Spain. With the performance model of GALA, we have sought to create the interface conditions that satisfy the science requirements on the probability of false detection (PFD) and the range accuracy. The science requirements on GALA performance can be summarized as involving the following four criteria: [1] for Europa fly-by, PFD is less than 0.2 from an altitude of 1300 km or lower, [2] under the worst observation condition for albedo and surface slope of GCO500 (Ganymede Circular Orbit whose height is 500 km), the accuracy of ranging is less than 10 m and PFD is less than 0.2, [3] under the nominal observation condition of GCO500, the accuracy of ranging is less than 2 m and PFD is less than 0.1, and [4] under the best observation condition of GCO500, the accuracy of ranging is less than 1 m and PFD is less than 0.1. For the assessment, however, we had used literature data as the characteristics of the laser detector of GALA, avalanche photodiode (APD), which should be degraded due to the severe radiation environment around Jupiter. Then we carried out a more realistic model simulation of GALA by incorporating these degradation effects of APD. Characteristics of APD, such as gain, quantum efficiency, excess noise index, surface dark current, and bulk dark current, were re-evaluated through radiation tests using the data of dark and photo current of the APD irradiated with 2-MeV-electron and 50-MeV-proton beams, which are the radiation conditions assumed for JUICEGALA around Jupiter. These degraded characteristics of APD by radiation were introduced to our performance model of GALA. As a result, our performance simulation of GALA showed again that the science requirements are satisfied even after taking into account the degraded characteristics of APD. The remaining matter is the effect of noise or digitization in the Analog Electronics Module (AEM), which must be taken into account for the final specifications of GALA.