We present a new lower bound on the number of gates in reversible logic circuits that represent a given reversible logic function, in which the circuits are assumed to consist of general Toffoli gates and have no redundant input/output lines. We make a theoretical comparison of lower bounds, and prove that the proposed bound is better than the previous one. Moreover, experimental results for lower bounds on randomly-generated reversible logic functions and reversible benchmarks are given. The results also demonstrate that the proposed lower bound is better than the former one.