著者
Hirokazu Takahashi Christophe Pradal
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.71, no.1, pp.109-116, 2021 (Released:2021-02-25)
参考文献数
68
被引用文献数
30

As plants cannot relocate, they require effective root systems for water and nutrient uptake. Root development plasticity enables plants to adapt to different environmental conditions. Research on improvements in crop root systems is limited in comparison with that in shoots as the former are difficult to image. Breeding more effective root systems is proposed as the “second green revolution”. There are several recent publications on root system architecture (RSA), but the methods used to analyze the RSA have not been standardized. Here, we introduce traditional and current root-imaging methods and discuss root structure phenotyping. Some important root structures have not been standardized as roots are easily affected by rhizosphere conditions and exhibit greater plasticity than shoots; moreover, root morphology significantly varies even in the same genotype. For these reasons, it is difficult to define the ideal root systems for breeding. In this review, we introduce several types of software to analyze roots and identify important root parameters by modeling to simplify the root system characterization. These parameters can be extracted from photographs captured in the field. This modeling approach is applicable to various legacy root data stored in old or unpublished formats. Standardization of RSA data could help estimate root ideotypes.
著者
Kiyoe Ishimoto Misuzu Nosaka-Takahashi Mitsuko Kishi-Kaboshi Tsuneaki Watanabe Kiyomi Abe Sae Shimizu-Sato Hirokazu Takahashi Mikio Nakazono Hirohiko Hirochika Yutaka Sato
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
pp.22.1117a, (Released:2023-01-23)
参考文献数
25

In plants, mitogen activated protein kinases (MPKs) are involved in various signaling pathways that lead to biotic and abiotic responses as well as that regulate developmental processes. Among them, MPK6 and its closely related homologue, MPK3, act redundantly and are known to be involved in asymmetric cell divisions of meristemoid mother cells in stomata development and of zygotes in Arabidopsis. Loss-of-function mutants of GLE4/OsMPK6, which is an orthologue of MPK6 in rice, showed a defect in polarity establishment in early stage of embryogenesis. However, because of the embryo lethality of the mutations, the function of GLE4/OsMPK6 in post-embryonic development is not clarified. Here, we report the analysis of post embryonic function of GLE4/OsMPK6 in vegetative stage of rice using regenerated gle4/osmpk6 homozygous plants from tissue culture. The regenerated plants are dwarf and produce multiple shoots with small leaves. These shoots never develop into reproductive stage, instead, proliferate vegetative shoots repeatedly. Leaves of gle4/osmpk6 have small leaf blade at the tip and blade-sheath boundary become obscure. Stomata arrangement is also disturbed in gle4/osmpk6 leaf blade. The shape of shoot apical meristem of gle4/osmpk6 become disorganized. Thus, GLE4/OsMPK6 functions in shoot organization and stomata patterning in the post embryonic development in rice.