著者
Tadashi HAMASAKI Hiroki UCHIKAWA Tatsuya KAWANO Keitaro KAI Tastuya TAKEZAKI Akitake MUKASA
出版者
The Japan Neurosurgical Society
雑誌
Neurologia medico-chirurgica (ISSN:04708105)
巻号頁・発行日
pp.2022-0283, (Released:2023-04-13)
参考文献数
19

Transsylvian selective amygdalohippocampectomy (TSA) is one of the predominant surgical options for drug-resistant mesial temporal lobe epilepsy. The purpose of this article is to highlight the unique features of TSA and determine the setting to perform safe and secure TSA with special reference to the optimal head position. TSA should be performed via a small surgical corridor in the temporal stem that contains functionally important fiber tracts, including the uncinate fasciculus, the inferior fronto-occipital fasciculus, and the optic radiation. Graphical simulations proposed that low-degree (<30°) head rotation had the advantage of sufficiently opening the surgical field in TSA and may help surgical procedures within the limited exposure of the medial temporal structures. Inspection of the surgical videos implied that the collapse of the inferior horn was prevented in low-degree rotation, probably because the deformation due to the brain shift was minimized in the medial temporal structures. A simulation also implied that chin-up position had the advantage of resecting the tail of the hippocampus in a straightforward manner. We suggest that the setting is optimized in TSA with low-degree rotation and chin-up head position.
著者
Hiroki UCHIKAWA Taichi KIN Satoshi KOIZUMI Katsuya SATO Tatsuya UCHIDA Yasuhiro TAKEDA Tsukasa KOIKE Satoshi KIYOFUJI Shigeo YAMASHIRO Akitake MUKASA Nobuhito SAITO
出版者
The Japan Neurosurgical Society
雑誌
Neurologia medico-chirurgica (ISSN:04708105)
巻号頁・発行日
pp.2023-0003, (Released:2023-08-23)
参考文献数
30

Rebleeding from a ruptured intracranial aneurysm has poor outcomes. Although numerous factors are associated with rebleeding, studies on computational fluid dynamics (CFD) on hemodynamic parameters associated with early rebleeding are scarce. In particular, no report of rebleeding in ultra-early phase exists. We aimed to elucidate the specific hemodynamic parameters associated with ultra-early rebleeding using CFD. In this study, the rebleeding group included patients with aneurysmal subarachnoid hemorrhage (aSAH) that rebled within 6 h from the onset. The control group included patients without rebleeding, observed for >10 h following the initial rupture. Clinical images after initial rupture and before rebleeding were used to build 3D vessel models for hemodynamic analysis focusing on the following parameters: time-averaged wall shear stress (WSS), normalized WSS, low shear area, oscillatory shear index, relative residence time, pressure loss coefficient, and aneurysmal inflow rate coefficient (AIRC). Five and 15 patients in the rebleeding and control groups, respectively, met the inclusion criteria. The World Federation of Neurosurgical Surgeons grade was significantly higher in the rebleeding group (p = 0.0088). Hemodynamic analysis showed significantly higher AIRC in the rebleeding group (p = 0.042). The other parameters were not significantly different between groups. There were no significant differences or correlations between SAH severity and AIRC. AIRC was identified as a hemodynamic parameter associated with ultra-early rebleeding of ruptured intracranial aneurysms. Thus, AIRC calculation may enable the prediction of ultra-early rebleeding.