著者
Hiroyuki Koide
出版者
The Pharmaceutical Society of Japan
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.44, no.1, pp.1-6, 2021-01-01 (Released:2021-01-01)
参考文献数
47
被引用文献数
2

Protein affinity reagents are widely used for basic research, diagnostics, and disease therapy. Antibodies and their fragments are known as the most common protein affinity reagents. They specifically and strongly bind to target molecules and inhibit their functions. Thus, antibody drugs have increased in the recent two decades for disease therapy, such as cancer. These strong protein–protein interactions are composed of a nexus of multiple weak interactions. Synthetic polymers that bind to target molecules have been developed by the imitation of protein–protein interactions. These polymers show nanomolar affinity for the target and neutralize their functions; thus, they are of significant interest as a cost-effective protein affinity reagent. We have been developing synthetic polymer nanoparticles (NPs) that bind to target peptides and proteins by the inclusion of several functional monomers, such as charged and hydrophobic monomers. In this review, the focus is on the design of synthetic polymer NPs that bind to target molecules for disease therapy. We succeeded in neutralization of toxic peptides and signaling proteins both in vitro and in vivo. Additionally, linear polymers were modified on a lipid nanoparticle surface to improve polymer biodistribution. Our recent findings should provide useful information for the development of abiotic protein affinity reagents.