著者
Shin-ichiro Agake Fernanda Plucani do Amaral Tetsuya Yamada Hitoshi Sekimoto Gary Stacey Tadashi Yokoyama Naoko Ohkama-Ohtsu
出版者
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.37, no.1, pp.ME21060, 2022 (Released:2022-01-27)
参考文献数
61
被引用文献数
3

Spores are a stress-resistant form of Bacillus spp., which include species that are plant growth-promoting rhizobacteria (PGPR). Previous studies showed that the inoculation of plants with vegetative cells or spores exerted different plant growth-promoting effects. To elucidate the spore-specific mechanism, we compared the effects of viable vegetative cells, autoclaved dead spores, and viable spores of Bacillus pumilus TUAT1 inoculated at 107 CFU plant–1 on the growth of the C4 model plant, Setaria viridis A10.1. B. pumilus TUAT1 spores exerted stronger growth-promoting effects on Setaria than on control plants 14 days after the inoculation. Viable spores increased shoot weight, root weight, shoot length, root length, and nitrogen uptake efficiency 21 days after the inoculation. These increases involved primary and crown root formation. Additionally, autoclaved dead spores inoculated at 108 or 109 CFU plant–1 had a positive impact on crown root differentiation, which increased total lateral root length, resulting in a greater biomass and more efficient nitrogen uptake. The present results indicate that an inoculation with viable spores of B. pumilus TUAT1 is more effective at enhancing the growth of Setaria than that with vegetative cells. The plant response to dead spores suggests that the spore-specific plant growth-promoting mechanism is at least partly independent of symbiotic colonization.
著者
Sayed Ziauddin Hashami Hiroyuki Nakamura Naoko Ohkama-Ohtsu Katsuhiro Kojima Salem Djedidi Izumi Fukuhara Mohammad Daud Haidari Hitoshi Sekimoto Tadashi Yokoyama
出版者
Japanese Society of Microbial Ecology · The Japanese Society of Soil Microbiology
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.34, no.1, pp.64-75, 2019 (Released:2019-03-30)
参考文献数
35
被引用文献数
9

Legumes form root nodules and fix atmospheric nitrogen by establishing symbiosis with rhizobia. However, excessive root nodules are harmful to plants because of the resulting overconsumption of energy from photosynthates. The delay of an inoculation of the soybean super-nodulation mutant NOD1–3 with Bradyrhizobium diazoefficiens USDA110T by 5 d after an inoculation with several soil bacteria confirmed that one bacterial group significantly decreased root nodules throughout the study period. Moreover, no significant changes were observed in nitrogen fixation by root nodules between an inoculation with USDA 110T only and co-inoculation treatments. To clarify the potential involvement of PR proteins in the restriction of nodule formation in the plants tested, the relative expression levels of PR-1, PR-2, PR-5, and PDF1.2 in NOD1–3 roots were measured using real-time PCR. One group of soil bacteria (Gr.3), which markedly reduced nodule numbers, significantly induced the expression of PR-1, PR-5 and PDF1.2 genes by day 5 after the inoculation. By days 7, 10, and 20 after the inoculation, the expression levels of PR-2 and PR-5 were lower than those with the uninoculated treatment. Inoculations with this group of soil bacteria resulted in lower root nodule numbers than with other tested soil bacteria exerting weak inhibitory effects on nodulation, and were accompanied by the induction of plant defense-related genes. Thus, PR genes appear to play important roles in the mechanisms that suppresses nodule formation on soybean roots.