著者
Isana FUNAHASHI Taichi YOSHIDA Xi ZHANG Masahiro IWAHASHI
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE TRANSACTIONS on Information and Systems (ISSN:09168532)
巻号頁・発行日
vol.E105-D, no.1, pp.123-133, 2022-01-01

In this paper, we propose an image adjustment method for multi-exposure images based on convolutional neural networks (CNNs). We call image regions without information due to saturation and object moving in multi-exposure images lacking areas in this paper. Lacking areas cause the ghosting artifact in fused images from sets of multi-exposure images by conventional fusion methods, which tackle the artifact. To avoid this problem, the proposed method estimates the information of lacking areas via adaptive inpainting. The proposed CNN consists of three networks, warp and refinement, detection, and inpainting networks. The second and third networks detect lacking areas and estimate their pixel values, respectively. In the experiments, it is observed that a simple fusion method with the proposed method outperforms state-of-the-art fusion methods in the peak signal-to-noise ratio. Moreover, the proposed method is applied for various fusion methods as pre-processing, and results show obviously reducing artifacts.