著者
Sungjin CHOI Jongil LEE Kazuyo IGAWA I-Li LIU Muneki HONNAMI Shigeki SUZUKI Ryohei NISHIMURA Ung-Il CHUNG Nobuo SASAKI Manabu MOCHIZUKI
出版者
公益社団法人 日本獣医学会
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
vol.75, no.6, pp.721-726, 2013 (Released:2013-07-01)
参考文献数
29
被引用文献数
1 2

In this study, we aimed to determine the effect of trehalose coating and the optimal dose of basic fibroblast growth factor (bFGF), an osteoinductive protein, loaded onto tailor-made bone implants for implant-induced bone formation in vivo. We fabricated tailor-made α-tricalcium phosphate bone implants (11 mm diameter with 2 parallel cylindrical holes). bFGF 0, 1, 10, 100 or 200 μg/implant was incorporated into implants with and without a trehalose coating, and these were subsequently implanted into dogs to correct temporal bone defects of the same size and shape. Four weeks after implantation, we analyzed the bone implants and surrounding tissues by using micro-computed tomography imaging and histological analyses, as well as gross evaluation. No significant difference in new bone formation was observed between implants with and without a trehalose coating at any of the bFGF doses. Bone implants with 100 and 200 μg bFGF showed significantly more new bone formation at the implant site and within the cylindrical holes of the implants than those without bFGF (Pin vivo, probably due to the presence of blood proteins and electrolytes at the implant site.
著者
Sungjin CHOI Jongil LEE Kazuyo IGAWA I-li LIU Muneki HONNAMI Shigeki SUZUKI Ryohei NISHIMURA Ung-il CHUNG Nobuo SASAKI Manabu MOCHIZUKI
出版者
公益社団法人 日本獣医学会
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.12-0244, (Released:2013-01-21)
被引用文献数
1 2

In this study, we aimed to determine the effect of trehalose coating and the optimal dose of basic fibroblast growth factor (bFGF), an osteoinductive protein, loaded onto tailor-made bone implants for implant-induced bone formation in vivo. We fabricated tailor-made α-tricalcium phosphate bone implants (11 mm diameter with 2 parallel cylindrical holes). bFGF 0, 1, 10, 100 or 200 μg/implant was incorporated into implants with and without a trehalose coating, and these were subsequently implanted into dogs to correct temporal bone defects of the same size and shape. Four weeks after implantation, we analyzed the bone implants and surrounding tissues by using micro-computed tomography imaging and histological analyses, as well as gross evaluation. No significant difference in new bone formation was observed between implants with and without trehalose coating at any of the bFGF doses. Bone implants with 100 and 200 μg bFGF showed significantly more new bone formation at the implant site and within the cylindrical holes of the implants than those without bFGF (P<0.05). However, heterotopic bone formation on the skull near the implant was observed in the group that received 200 μg bFGF. These results suggest that 100 μg bFGF is the optimal dose for this implant in dogs, and that the trehalose coating may not be necessary in vivo, probably due to the presence of blood proteins and electrolytes at the implant site.
著者
Sungjin CHOI Jongil LEE Kazuyo IGAWA Shigeki SUZUKI Manabu MOCHIZUKI Ryohei NISHIMURA Ung-il CHUNG Nobuo SASAKI
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
vol.73, no.12, pp.1547-1552, 2011 (Released:2012-01-06)
参考文献数
36
被引用文献数
2 2

Artificial bone implants are often incorporated with osteoinductive factors to facilitate early bone regeneration. Calcium phosphate, the main component in artificial bone implants, strongly binds these factors, and in a few cases, the incorporated proteins are not released from the implant under conditions of physiological pH, thereby leading to reduction in their osteoinductivity. In this study, we coated tailor-made bone implants with trehalose to facilitate the release of basic fibroblast growth factor (bFGF). In an in vitro study, mouse osteoblastic cells were separately cultured for 48 hr in a medium with a untreated implant (T-), trehalose-coated implant (T+), bFGF-incorporated implant (FT-), and bFGF-incorporated implant with trehalose coating (FT+). In the FT+ group, cell viability was significantly higher than that in the other groups (P<0.05). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that trehalose effectively covered the surface of the artificial bone implant without affecting the crystallinity or the mechanical strength of the artificial bone implant. These results suggest that coating artificial bone implants with trehalose could limit the binding of bFGF to calcium phosphate.