著者
Shinya Yoshikawa Yu Kanesaki Akira Uemura Kazumasa Yamada Maiko Okajima Tatsuo Kaneko Kaori Ohki
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
pp.2021.02.002, (Released:2021-07-10)
参考文献数
34
被引用文献数
3

A unicellular cyanobacterium that produces a large amount of exopolysaccharide (EPS) was isolated. The isolate, named Chroococcus sp. FPU101, grew between 20 and 30°C and at light intensities between 10 and 80 μmol m–2 s–1. Purified EPS from Chroococcus sp. FPU101 had a molecular size of 5.9 × 103 kDa and contained galactose, rhamnose, fucose, xylose, mannose, glucose, galacturonic acid, and glucuronic acid at a molar ratio of 17.2:15.9:14.1:11.0:9.6:9.5:13.0:9.7. The EPS content significantly increased when the NaCl concentration in the medium was increased from 1.7 to 100 mM. However, high NaCl concentrations did not significantly affect the molecular size or chemical composition of the EPS. The genes wza, wzb, wzc, wzx, wzy, and wzz that are involved in EPS synthesis were conserved in the genome of Chroococcus sp. FPU101, which was sequenced in this study. These results suggest that the Wzy-dependent pathway is potentially involved in EPS production in this organism.
著者
Haruki Yamamoto Hiroko Kojima-Ando Kaori Ohki Yuichi Fujita
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
pp.2020.01.009, (Released:2020-04-02)
参考文献数
62
被引用文献数
8

Protochlorophyllide (Pchlide) reduction is the penultimate step of chlorophyll (Chl) biosynthesis, and is catalyzed by two evolutionarily unrelated enzymes: dark-operative Pchlide oxidoreductase (DPOR) and light-dependent Pchlide oxidoreductase (LPOR). Because LPOR is the sole Pchlide reductase in angiosperms, dark-grown seedlings of angiosperms become etiolated. LPOR exists as a ternary complex of Pchlide-NADPH-LPOR to form paracrystalline prolamellar bodies (PLBs) in etioplasts. Because LPOR is distributed ubiquitously across oxygenic phototrophs including cyanobacteria, it would be important to determine whether cyanobacterial LPOR has the ability to form PLBs. We isolated a DPOR-less transformant ΔchlL/LPORox, carrying a plasmid to overexpress cyanobacterial LPOR in the cyanobacterium Leptolyngbya boryana. The transformant did not produce Chl in the dark and became etiolated with an accumulation of Pchlide and LPOR. Novel PLB-like ultrastructures were observed in etiolated cells, which disappeared during the early stage of the light-dependent greening process. However, the rate of Chl production in the greening process of ΔchlL/LPORox was almost the same as that observed in the control cells, which carried an empty vector. An in vitro LPOR assay of extracts of dark-grown ΔchlL/LPORox cells suggested that the PLB-like structures are deficient in NADPH. Low-temperature fluorescence emission spectra of membrane fractions of the etiolated cells indicated the absence of the photoactive form of Pchlide, which was consistent with the inefficiency of the greening process. Cyanobacterial LPOR exhibited an intrinsic ability to form PLB-like ultrastructures in the presence of the co-accumulation of Pchlide; however, the PLB-like structure differed from the authentic PLB regarding NADPH deficiency.
著者
Kaori Ohki Kazumasa Yamada Mitsunobu Kamiya Shinya Yoshikawa
出版者
Japanese Society of Microbial Ecology · The Japanese Society of Soil Microbiology
雑誌
Microbes and Environments (ISSN:13426311)
巻号頁・発行日
vol.27, no.2, pp.171-178, 2012 (Released:2012-06-09)
参考文献数
39
被引用文献数
8 15

Small cyanobacteria (<2 μm, pico-cyanobacteria) are abundant in waters deeper than the oxic-anoxic zone in the halocline of a saline meromictic lake, Lake Suigetsu, Fukui, Japan. We have isolated 101 strains that were grouped into six groups by means of the phycobiliprotein composition and sequence homology of the intergenic spacer between the 16S and 23S rRNA genes. Significant growth was observed under weak green light (1.5 μmol m−2 s−1, approx. 460 to 600 nm), whereas the cells died under white light at even moderate intensities. The isolates grew in a wide range of salinities (0.2 to 3.2%). Tolerance to sulfide varied: four groups grew in medium containing sulfide, however, two groups did not. None of the isolates were capable of anoxygenic photosynthetic (PS-II independent photosynthetic) growth using sulfide as an electron donor. All groups were included within fresh and brackish water of Synechococcus/Cyanobium clade, but they were not monophyletic in the 16S rRNA gene-based phylogenetic tree. The physiological properties of pico-cyanobacteria showed that they had the ability to survive in unique physicochemical environments in the halocline of this saline meromictic lake.