著者
Shinji Naganawa Toshiki Nakane Hisashi Kawai Toshiaki Taoka Hirokazu Kawaguchi Katsuya Maruyama Katsutoshi Murata Gregor Körzdörfer Josef Pfeuffer Mathias Nittka Michihiko Sone
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2019-0048, (Released:2019-06-20)
参考文献数
31
被引用文献数
14

Purpose: It has been reported that leakage of intravenously administered gadolinium-based contrast agents (IV-GBCAs) into the cerebrospinal fluid (CSF) from the cortical veins even in healthy subjects can be detected using a highly sensitive pulse sequence such as heavily T2-weighted 3D fluid-attenuated inversion recovery and 3D-real inversion recovery (IR). The purpose of this study was to evaluate the feasibility of MR fingerprinting to detect GBCA leakage from the cortical veins after IV-GBCA.Materials: Fourteen patients with suspected endolymphatic hydrops (EH) who received a single dose of IV-GBCA (39–79 years old) were included. The real IR images as well as MR fingerprinting images were obtained at 4 h after IV-GBCA. T1 and T2 values were obtained using MR fingerprinting and analyzed in ROIs covering intense GBCA leakage, and non-leakage areas of the CSF as determined on real IR images. The scan time for real IR imaging was 10 min and that for MR fingerprinting was 41 s.Results: The mean T1 value of the ROI in the area of GBCA leakage was 2422 ± 261 ms and that in the non-leakage area was 3851 ± 235 ms (P < 0.01). There was no overlap between the T1 values in the area of GBCA leakage and those in the non-leakage area.The mean T2 value in the area of GBCA leakage was 319 ± 90 ms and that in the non-leakage area was 670 ± 166 ms (P < 0.01). There was some overlap between the T2 values in the area of GBCA leakage and those in the non-leakage area.Conclusion: Leaked GBCA from the cortical veins into the surrounding CSF can be detected using MR fingerprinting obtained in <1 min.
著者
Tomoko Maekawa Kouhei Kamiya Katsutoshi Murata Thorsten Feiweier Masaaki Hori Shigeki Aoki
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
vol.20, no.2, pp.227-230, 2021 (Released:2021-06-01)
参考文献数
12
被引用文献数
2 5

The microstructural underpinnings of reduced diffusivity in transient splenial lesion remain unclear. Here, we report findings from oscillating gradient spin-echo (OGSE) diffusion imaging in a case of transient splenial lesion. Compared with normal-appearing white matter, the splenial lesion exhibited greater differences between diffusion time t = 6.5 and 35.2 ms, indicating microstructural changes occurring within the corresponding length scale. We also conducted 2D Monte-Carlo simulation. The results suggested that emergence of small and non-exchanging compartment, as often imagined in intramyelinic edema, does not fit well with the in vivo observation. Simulations with axonal swelling and microglial infiltration yielded results closer to the in vivo observations. The present report exemplifies the importance of controlling t for more specific radiological image interpretations.
著者
Tomoko Maekawa Masaaki Hori Katsutoshi Murata Thorsten Feiweier Kouhei Kamiya Christina Andica Akifumi Hagiwara Shohei Fujita Koji Kamagata Akihiko Wada Osamu Abe Shigeki Aoki
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.ici.2021-0083, (Released:2021-09-10)
参考文献数
12

Oscillating-gradient spin-echo sequences enable the measurement of diffusion weighting with a short diffusion time and can provide indications of internal structures. We report two cases of brain abscess in which the apparent diffusion coefficient (ADC) values appear higher at short diffusion times in comparison with those at long diffusion times. Diffusion time dependence of the ADC in brain abscesses suggests not only substrate viscosity but also restricted diffusion due to the structure within the lesions.