著者
Masami Goto Osamu Abe Akifumi Hagiwara Shohei Fujita Koji Kamagata Masaaki Hori Shigeki Aoki Takahiro Osada Seiki Konishi Yoshitaka Masutani Hajime Sakamoto Yasuaki Sakano Shinsuke Kyogoku Hiroyuki Daida
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0096, (Released:2022-02-18)
参考文献数
106
被引用文献数
31

Surface-based morphometry (SBM) is extremely useful for estimating the indices of cortical morphology, such as volume, thickness, area, and gyrification, whereas voxel-based morphometry (VBM) is a typical method of gray matter (GM) volumetry that includes cortex measurement. In cases where SBM is used to estimate cortical morphology, it remains controversial as to whether VBM should be used in addition to estimate GM volume. Therefore, this review has two main goals. First, we summarize the differences between the two methods regarding preprocessing, statistical analysis, and reliability. Second, we review studies that estimate cortical morphological changes using VBM and/or SBM and discuss whether using VBM in conjunction with SBM produces additional values. We found cases in which detection of morphological change in either VBM or SBM was superior, and others that showed equivalent performance between the two methods. Therefore, we concluded that using VBM and SBM together can help researchers and clinicians obtain a better understanding of normal neurobiological processes of the brain. Moreover, the use of both methods may improve the accuracy of the detection of morphological changes when comparing the data of patients and controls.In addition, we introduce two other recent methods as future directions for estimating cortical morphological changes: a multi-modal parcellation method using structural and functional images, and a synthetic segmentation method using multi-contrast images (such as T1- and proton density-weighted images).
著者
Akihiko Wada Yuya Saito Shohei Fujita Ryusuke Irie Toshiaki Akashi Katsuhiro Sano Shinpei Kato Yutaka Ikenouchi Akifumi Hagiwara Kanako Sato Nobuo Tomizawa Yayoi Hayakawa Junko Kikuta Koji Kamagata Michimasa Suzuki Masaaki Hori Atsushi Nakanishi Shigeki Aoki
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0068, (Released:2021-12-10)
参考文献数
32
被引用文献数
5

Purpose: Myelination-related MR signal changes in white matter are helpful for assessing normal development in infants and children. A rule-based myelination evaluation workflow regarding signal changes on T1-weighted images (T1WIs) and T2-weighted images (T2WIs) has been widely used in radiology. This study aimed to simulate a rule-based workflow using a stacked deep learning model and evaluate age estimation accuracy.Methods: The age estimation system involved two stacked neural networks: a target network-to extract five myelination-related images from the whole brain, and an age estimation network from extracted T1- and T2WIs separately. A dataset was constructed from 119 children aged below 2 years with two MRI systems. A four-fold cross-validation method was adopted. The correlation coefficient (CC), mean absolute error (MAE), and root mean squared error (RMSE) of the corrected chronological age of full-term birth, as well as the mean difference and the upper and lower limits of 95% agreement, were measured. Generalization performance was assessed using datasets acquired from different MR images. Age estimation was performed in Sturge–Weber syndrome (SWS) cases.Results: There was a strong correlation between estimated age and corrected chronological age (MAE: 0.98 months; RMSE: 1.27 months; and CC: 0.99). The mean difference and standard deviation (SD) were −0.15 and 1.26, respectively, and the upper and lower limits of 95% agreement were 2.33 and −2.63 months. Regarding generalization performance, the performance values on the external dataset were MAE of 1.85 months, RMSE of 2.59 months, and CC of 0.93. Among 13 SWS cases, 7 exceeded the limits of 95% agreement, and a proportional bias of age estimation based on myelination acceleration was exhibited below 12 months of age (P = 0.03).Conclusion: Stacked deep learning models automated the rule-based workflow in radiology and achieved highly accurate age estimation in infants and children up to 2 years of age.
著者
Tomoko Maekawa Masaaki Hori Katsutoshi Murata Thorsten Feiweier Kouhei Kamiya Christina Andica Akifumi Hagiwara Shohei Fujita Koji Kamagata Akihiko Wada Osamu Abe Shigeki Aoki
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.ici.2021-0083, (Released:2021-09-10)
参考文献数
12

Oscillating-gradient spin-echo sequences enable the measurement of diffusion weighting with a short diffusion time and can provide indications of internal structures. We report two cases of brain abscess in which the apparent diffusion coefficient (ADC) values appear higher at short diffusion times in comparison with those at long diffusion times. Diffusion time dependence of the ADC in brain abscesses suggests not only substrate viscosity but also restricted diffusion due to the structure within the lesions.