著者
Tomoyuki Furuya Ryuichi Nishihama Kimitsune Ishizaki Takayuki Kohchi Hiroo Fukuda Yuki Kondo
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
pp.21.1219a, (Released:2022-02-18)
参考文献数
43
被引用文献数
8

Plants precisely coordinate the balance between cell proliferation and differentiation to ensure the continuous development. In Arabidopsis thaliana, members of glycogen synthase kinase 3 (GSK3) family, which are highly conserved serine/threonine protein kinases among eukaryotes, play important roles in regulating cell proliferation and differentiation during various developmental processes. However, functional roles of GSK3s in the plant lineages except angiosperms remain to be elucidated. Here, we utilized a model liverwort, Marchantia polymorpha, for studies of GSK3, because it has a single GSK3-like kinase, MpGSK. When M. polymorpha was treated with a chemical compound, bikinin, which is known as a specific inhibitor for GSK3-like kinases, growth and morphologies were altered with an expansion of the meristematic region. Similarly, Mpgsk loss-of-function mutants accumulated undifferentiated cell mass with no differentiated tissues. By contrast, overexpression of MpGSK reduced the size of the meristem region. These results suggest that MpGSK plays important roles as a regulator for the balance between cell differentiation and proliferation in M. polymorpha.
著者
Yuuki Sakai Takumi Higaki Kimitsune Ishizaki Ryuichi Nishihama Takayuki Kohchi Seiichiro Hasezawa
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.39, no.1, pp.5-12, 2022-03-25 (Released:2022-03-25)
参考文献数
32
被引用文献数
1 2

The development of the plant body starts with spore germination in bryophytes. In many cases, the first division of the spore occurs after germination and cell elongation of the spore. In Marchantia polymorpha, asymmetric division occurs upon spore germination to generate two daughter cells: the larger one retains the ability to divide and develops into the thallus via sporeling or protonema, while the smaller one maintains tip growth and differentiates into the first rhizoid, providing a scaffold for initial development. Although spore germination of M. polymorpha was described in the 19th century, the intracellular processes of the first asymmetric division of the spore have not been well characterized. In this study, we used live-cell imaging analyses to elucidate microtubule dynamics during the first asymmetric division concomitantly with germination. In particular, we demonstrated that the preprophase band was not formed in the spore and that the bipolar prospindle, which is a microtubule structure surrounding the nucleus during prophase, migrated from the center to the periphery in the spore, suggesting that it was the earliest visible sign of cell polarity. We also showed that the occurrence of asymmetric division depended on actin filaments. Our findings regarding the first division of the spore in M. polymorpha will lead to a better model for cell-autonomous asymmetric division in plants.
著者
Tomoyuki Furuya Ryuichi Nishihama Kimitsune Ishizaki Takayuki Kohchi Hiroo Fukuda Yuki Kondo
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.39, no.1, pp.65-72, 2022-03-25 (Released:2022-03-25)
参考文献数
43
被引用文献数
8

Plants precisely coordinate the balance between cell proliferation and differentiation to ensure the continuous development. In Arabidopsis thaliana, members of glycogen synthase kinase 3 (GSK3) family, which are highly conserved serine/threonine protein kinases among eukaryotes, play important roles in regulating cell proliferation and differentiation during various developmental processes. However, functional roles of GSK3s in the plant lineages except angiosperms remain to be elucidated. Here, we utilized a model liverwort, Marchantia polymorpha, for studies of GSK3, because it has a single GSK3-like kinase, MpGSK. When M. polymorpha was treated with a chemical compound, bikinin, which is known as a specific inhibitor for GSK3-like kinases, growth and morphologies were altered with an expansion of the meristematic region. Similarly, Mpgsk loss-of-function mutants accumulated undifferentiated cell mass with no differentiated tissues. By contrast, overexpression of MpGSK reduced the size of the meristem region. These results suggest that MpGSK plays important roles as a regulator for the balance between cell differentiation and proliferation in M. polymorpha.