著者
Kinoshita Tamotu
出版者
Elsevier Inc.
雑誌
Journal of differential equations (ISSN:00220396)
巻号頁・発行日
vol.261, no.10, pp.5411-5423, 2016-11

In this paper, we study well-posedness issues in the weighted L2L2 space for the Cauchy problem on [0,T]×Rx[0,T]×Rx for wave equations of the form View the MathML source∂t2u−a(t,x)∂x2u=0. We shall give the condition a(t,x)>0a(t,x)>0 for all (t,x)∈[0,T]×Rx(t,x)∈[0,T]×Rx which is between the strictly hyperbolic condition and weakly hyperbolic one, and allows the decaying coefficient a(t,x)a(t,x) such that lim|x|→∞⁡a(t,x)=0lim|x|→∞⁡a(t,x)=0 for all t∈[0,T]t∈[0,T]. Our concerns are the loss of derivatives and decays of the solutions.
著者
Fukuda Naohiro Kinoshita Tamotu
出版者
Springer
雑誌
Japan journal of industrial and applied mathematics (ISSN:09167005)
巻号頁・発行日
vol.29, no.1, pp.63-82, 2012-02
被引用文献数
3

In this paper, we introduce a new kind of wavelet which converges in L q to the Shannon wavelet as the order parameter n increases. In particular, we shall give a symmetric orthogonal scaling function whose time-bandwidth product is near 1/2 and describe some applications.
著者
Galstian Anahit Kinoshita Tamotu Yagdjian Karen
出版者
American Institute of Physics
雑誌
Journal of mathematical physics (ISSN:00222488)
巻号頁・発行日
vol.51, no.5, pp.052501, 2010-05
被引用文献数
20 5

We consider the wave propagating in the Einstein and de Sitter space-time. The covariant d’Alembert’s operator in the Einstein and de Sitter space-time belongs to the family of the non-Fuchsian partial differential operators. We introduce the initial value problem for this equation and give the explicit representation formulas for the solutions. We also show the Lp−Lq estimates for solutions.