著者
Makoto Obara Jihun Kwon Masami Yoneyama Yu Ueda Marc Van Cauteren
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2022-0107, (Released:2023-03-15)
参考文献数
195
被引用文献数
1

Since its first observation in the 18th century, the diffusion phenomenon has been actively studied by many researchers. Diffusion-weighted imaging (DWI) is a technique to probe the diffusion of water molecules and create a MR image with contrast based on the local diffusion properties. The DWI pixel intensity is modulated by the hindrance the diffusing water molecules experience. This hindrance is caused by structures in the tissue and reflects the state of the tissue. This characteristic makes DWI a unique and effective tool to gain more insight into the tissue’s pathophysiological condition. In the past decades, DWI has made dramatic technical progress, leading to greater acceptance in clinical practice. In the abdominal region, however, acquiring DWI with good quality is challenging because of several reasons, such as large imaging volume, respiratory and other types of motion, and difficulty in achieving homogeneous fat suppression. In this review, we discuss technical advancements from the past decades that help mitigate these problems common in abdominal imaging. We describe the use of scan acceleration techniques such as parallel imaging and compressed sensing to reduce image distortion in echo planar imaging. Then we compare techniques developed to mitigate issues due to respiratory motion, such as free-breathing, respiratory-triggering, and navigator-based approaches. Commonly used fat suppression techniques are also introduced, and their effectiveness is discussed. Additionally, the influence of the abovementioned techniques on image quality is demonstrated. Finally, we discuss the current and future clinical applications of abdominal DWI, such as whole-body DWI, simultaneous multiple-slice excitation, intravoxel incoherent motion, and the use of artificial intelligence. Abdominal DWI has the potential to develop further in the future, thanks to scan acceleration and image quality improvement driven by technological advancements. The accumulation of clinical proof will further drive clinical acceptance.
著者
Tetsuro Sekine Masatoki Nakaza Mitsuo Matsumoto Takahiro Ando Tatsuya Inoue Shun-Ichiro Sakamoto Mitsunori Maruyama Makoto Obara Olgierd Leonowicz Jitsuo Usuda Shinichiro Kumita
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0137, (Released:2022-02-19)
参考文献数
68
被引用文献数
3

Most cardiac diseases cause a non-physiological blood flow pattern known as turbulence around the heart and great vessels, which further worsen the disease itself. However, there is no consensus on how blood flow can be defined in disease conditions. Especially, in the left atrium, the fact that vortex flow already exists makes this debate more complicated. 3D time-resolved phase-contrast (4D flow) MRI is expected to be able to capture blood flow patterns from multiple aspects, such as blood flow velocity, stasis, and vortex quantification. Previous studies have confirmed that physiological vortex flow is predominantly induced by the higher-volume flow from the superior left pulmonary vein. In atrial fibrillation, 4D flow MRI reveals a non-physiological blood flow pattern, which information may add value to well-established clinical risk factors. Currently, the research target of LA analysis has also widened to lung surgeons, pulmonary vein stump thrombosis after left upper lobectomy. 4D flow MRI is expected to be utilized for many more variable diseases that are currently unimaginable.
著者
Shuhei Shibukawa Natsuo Konta Tetsu Niwa Makoto Obara Yuta Akamine Norihiko Shinozaki Takashi Okazaki Yui Nagafuji Tosiaki Miyati
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.tn.2019-0172, (Released:2020-07-13)
参考文献数
14
被引用文献数
2 1

This study aimed to assess the feasibility for applying enhanced acceleration-selective arterial spin labeling (eAccASL) to non-electrocardiogram-gated and non-enhanced peripheral MRA. We compared eAccASL and background suppressed single shot turbo field echo (TFE)-triggered angiography non-contrast-enhanced sequence (BASS TRANCE) required electrocardiographic-gating in eight volunteers and three patients. In the volunteer study, eAccASL demonstrated a comparable arterial visualization compared with BASS TRANCE. In patient observation, the advantages with eAccASL were found in arterial visualization on the collateral vessels and without artifacts affected by arrhythmia events.
著者
Masatoki Nakaza Mitsuo Matsumoto Tetsuro Sekine Tatsuya Inoue Takahiro Ando Masashi Ogawa Makoto Obara Olgierd Leonowicz Shinichiro Kumita Jitsuo Usuda
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0170, (Released:2021-03-31)
参考文献数
40
被引用文献数
19

Purpose: The purpose of the current study was to clarify the blood flow pattern in the left atrium (LA), potentially causing the formation of thrombosis after left upper lobectomy (LUL). The blood flow in the LA was evaluated and compared between LUL patients with and without thrombosis. For the evaluation, we applied highly accelerated 4D flow MRI with dual-velocity encoding (VENC) scheme, which was expected to be able to capture slow flow components in the LA accurately.Methods: Eight volunteers and 18 patients subjected to LUL underwent dual-VENC 4D Flow MRI. Eight patients had a history of thrombosis. We measured the blood flow velocity and stasis ratio (proportion in the volume that did not exceed 10 cm/s in any cardiac phase) in the LA and left superior pulmonary vein (LSPV) stump. For visual assessment, the presence of each collision of the blood flow from pulmonary veins and vortex flow in the LA were evaluated. Each acquired value was compared between healthy participants and LUL patients, and in LUL patients with and without thrombosis.Results: In LUL patients, blood flow velocity near the inflow part of the left superior pulmonary vein (Lt Upp) and mean velocity in the LA were lower, and stasis ratio in the LA was higher compared with healthy volunteers (Lt Upp 9.10 ± 3.09 vs.13.23 ± 14.19 cm/s, mean velocity in the LA 9.81 ± 2.49 vs. 11.40 ± 1.15 cm/s, and stasis ratio 25.28 ± 18.64 vs. 4.71 ± 3.03%, P = 0.008, 0.037, and < 0.001). There was no significant difference in any quantification values between LUL patients with and without thrombosis. For visual assessment, the thrombus formation was associated with no collision pattern (62.5% vs. 10%, P = 0.019) and not with vortex flow pattern (50% vs. 30%, P = 0.751).Conclusion: The net blood flow velocity was not associated with the thrombus formation. In contrast, a specific blood flow pattern, the absence of blood flow collision from pulmonary veins, correlates to the thrombus formation in the LA.