著者
Tetsuro Sekine Masatoki Nakaza Mitsuo Matsumoto Takahiro Ando Tatsuya Inoue Shun-Ichiro Sakamoto Mitsunori Maruyama Makoto Obara Olgierd Leonowicz Jitsuo Usuda Shinichiro Kumita
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.rev.2021-0137, (Released:2022-02-19)
参考文献数
68
被引用文献数
3

Most cardiac diseases cause a non-physiological blood flow pattern known as turbulence around the heart and great vessels, which further worsen the disease itself. However, there is no consensus on how blood flow can be defined in disease conditions. Especially, in the left atrium, the fact that vortex flow already exists makes this debate more complicated. 3D time-resolved phase-contrast (4D flow) MRI is expected to be able to capture blood flow patterns from multiple aspects, such as blood flow velocity, stasis, and vortex quantification. Previous studies have confirmed that physiological vortex flow is predominantly induced by the higher-volume flow from the superior left pulmonary vein. In atrial fibrillation, 4D flow MRI reveals a non-physiological blood flow pattern, which information may add value to well-established clinical risk factors. Currently, the research target of LA analysis has also widened to lung surgeons, pulmonary vein stump thrombosis after left upper lobectomy. 4D flow MRI is expected to be utilized for many more variable diseases that are currently unimaginable.
著者
Masatoki Nakaza Mitsuo Matsumoto Tetsuro Sekine Tatsuya Inoue Takahiro Ando Masashi Ogawa Makoto Obara Olgierd Leonowicz Shinichiro Kumita Jitsuo Usuda
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0170, (Released:2021-03-31)
参考文献数
40
被引用文献数
19

Purpose: The purpose of the current study was to clarify the blood flow pattern in the left atrium (LA), potentially causing the formation of thrombosis after left upper lobectomy (LUL). The blood flow in the LA was evaluated and compared between LUL patients with and without thrombosis. For the evaluation, we applied highly accelerated 4D flow MRI with dual-velocity encoding (VENC) scheme, which was expected to be able to capture slow flow components in the LA accurately.Methods: Eight volunteers and 18 patients subjected to LUL underwent dual-VENC 4D Flow MRI. Eight patients had a history of thrombosis. We measured the blood flow velocity and stasis ratio (proportion in the volume that did not exceed 10 cm/s in any cardiac phase) in the LA and left superior pulmonary vein (LSPV) stump. For visual assessment, the presence of each collision of the blood flow from pulmonary veins and vortex flow in the LA were evaluated. Each acquired value was compared between healthy participants and LUL patients, and in LUL patients with and without thrombosis.Results: In LUL patients, blood flow velocity near the inflow part of the left superior pulmonary vein (Lt Upp) and mean velocity in the LA were lower, and stasis ratio in the LA was higher compared with healthy volunteers (Lt Upp 9.10 ± 3.09 vs.13.23 ± 14.19 cm/s, mean velocity in the LA 9.81 ± 2.49 vs. 11.40 ± 1.15 cm/s, and stasis ratio 25.28 ± 18.64 vs. 4.71 ± 3.03%, P = 0.008, 0.037, and < 0.001). There was no significant difference in any quantification values between LUL patients with and without thrombosis. For visual assessment, the thrombus formation was associated with no collision pattern (62.5% vs. 10%, P = 0.019) and not with vortex flow pattern (50% vs. 30%, P = 0.751).Conclusion: The net blood flow velocity was not associated with the thrombus formation. In contrast, a specific blood flow pattern, the absence of blood flow collision from pulmonary veins, correlates to the thrombus formation in the LA.