著者
Masato Araragi Airi Ikeura Toshiki Uchiumi
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.1, pp.23-30, 2021-03-25 (Released:2021-03-25)
参考文献数
40
被引用文献数
2

Many abiotic stresses induce the generation of nitric oxide (NO) in plant tissues, where it functions as a signal molecule in stress responses. Plants modulate NO by oxidizing it to NO3− with plant hemoglobin (GLB), because excess NO is toxic to cells. At least eight genes encoding GLB have been identified in soybean, in three clades: GLB1, GLB2, and GLB3. However, it is still unclear which GLB genes are responsible for NO regulation under abiotic stress in soybean. We exposed soybean roots to flooding, salt, and two NO donors—sodium pentacyanonitrosylferrate (III) dihydrate (SNP) and S-nitroso-N-acetyl-D,L-penicillamine (SNAP)—and analyzed expression of GLB genes. GmGLB1, one of two GLB1 genes of soybean, significantly responded to both SNP and SNAP, and its induction was almost completely repressed by a NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. GmGLB1 responded to flooding but not to salt, suggesting that it is responsible for NO regulation under NO-inducing abiotic stresses such as flooding. GmGLB3, one of two GLB3 genes of soybean, did not respond to NO donors at all but did respond to flooding, at a lower level than GmGLB1. These results suggest that flooding induces not only NO but also unknown factor(s) that induce GmGLB3 gene in soybean.