著者
Mayumi Nakanishi-Matsui Naomi Matsumoto
出版者
The Pharmaceutical Society of Japan
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.45, no.10, pp.1426-1431, 2022-10-01 (Released:2022-10-01)
参考文献数
54
被引用文献数
7

Vacuolar-type ATPase (V-ATPase) shares its structure and rotational catalysis with F-type ATPase (F-ATPase, ATP synthase). However, unlike subunits of F-ATPase, those of V-ATPase have tissue- and/or organelle-specific isoforms. Structural diversity of V-ATPase generated by different combinations of subunit isoforms enables it to play diverse physiological roles in mammalian cells. Among these various roles, this review focuses on the functions of lysosome-specific V-ATPase in bone resorption by osteoclasts. Lysosomes remain in the cytoplasm in most cell types, but in osteoclasts, secretory lysosomes move toward and fuse with the plasma membrane to secrete lysosomal enzymes, which is essential for bone resorption. Through this process, lysosomal V-ATPase harboring the a3 isoform of the a subunit is relocated to the plasma membrane, where it transports protons from the cytosol to the cell exterior to generate the acidic extracellular conditions required for secreted lysosomal enzymes. In addition to this role as a proton pump, we recently found that the lysosomal a3 subunit of V-ATPase is essential for anterograde trafficking of secretory lysosomes. Specifically, a3 interacts with Rab7, a member of the Rab guanosine 5ʹ-triphosphatase (GTPase) family that regulates organelle trafficking, and recruits it to the lysosomal membrane. These findings revealed the multifunctionality of lysosomal V-ATPase in osteoclasts; V-ATPase is responsible not only for the formation of the acidic environment by transporting protons, but also for intracellular trafficking of secretory lysosomes by recruiting organelle trafficking factors. Herein, we summarize the molecular mechanism underlying secretory lysosome trafficking in osteoclasts, and discuss the possible regulatory role of V-ATPase in organelle trafficking.
著者
Masamitsu FUTAI Ge-Hong SUN-WADA Yoh WADA Naomi MATSUMOTO Mayumi NAKANISHI-MATSUI
出版者
The Japan Academy
雑誌
Proceedings of the Japan Academy, Series B (ISSN:03862208)
巻号頁・発行日
vol.95, no.6, pp.261-277, 2019-06-11 (Released:2019-06-11)
参考文献数
87
被引用文献数
74

Vacuolar-type ATPase (V-ATPase), initially identified in yeast and plant vacuoles, pumps protons into the lumen of organelles coupled with ATP hydrolysis. The mammalian counterpart is found ubiquitously in endomembrane organelles and the plasma membrane of specialized cells such as osteoclasts. V-ATPase is also present in unique organelles such as insulin secretory granules, neural synaptic vesicles, and acrosomes of spermatozoa. Consistent with its diverse physiological roles and unique localization, the seven subunits of V-ATPase have 2–4 isoforms that are organelle- or cell-specific. Subunits of the enzyme function in trafficking organelles and vesicles by interacting with small molecule GTPases. During osteoclast differentiation, one of the four isoforms of subunit a, a3, is indispensable for secretory lysosome trafficking to the plasma membrane. Diseases such as osteopetrosis, renal acidosis, and hearing loss are related to V-ATPase isoforms. In addition to its role as an enzyme, V-ATPase has versatile physiological roles in eukaryotic cells.