著者
Akihiko Wada Yuya Saito Shohei Fujita Ryusuke Irie Toshiaki Akashi Katsuhiro Sano Shinpei Kato Yutaka Ikenouchi Akifumi Hagiwara Kanako Sato Nobuo Tomizawa Yayoi Hayakawa Junko Kikuta Koji Kamagata Michimasa Suzuki Masaaki Hori Atsushi Nakanishi Shigeki Aoki
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0068, (Released:2021-12-10)
参考文献数
32
被引用文献数
5

Purpose: Myelination-related MR signal changes in white matter are helpful for assessing normal development in infants and children. A rule-based myelination evaluation workflow regarding signal changes on T1-weighted images (T1WIs) and T2-weighted images (T2WIs) has been widely used in radiology. This study aimed to simulate a rule-based workflow using a stacked deep learning model and evaluate age estimation accuracy.Methods: The age estimation system involved two stacked neural networks: a target network-to extract five myelination-related images from the whole brain, and an age estimation network from extracted T1- and T2WIs separately. A dataset was constructed from 119 children aged below 2 years with two MRI systems. A four-fold cross-validation method was adopted. The correlation coefficient (CC), mean absolute error (MAE), and root mean squared error (RMSE) of the corrected chronological age of full-term birth, as well as the mean difference and the upper and lower limits of 95% agreement, were measured. Generalization performance was assessed using datasets acquired from different MR images. Age estimation was performed in Sturge–Weber syndrome (SWS) cases.Results: There was a strong correlation between estimated age and corrected chronological age (MAE: 0.98 months; RMSE: 1.27 months; and CC: 0.99). The mean difference and standard deviation (SD) were −0.15 and 1.26, respectively, and the upper and lower limits of 95% agreement were 2.33 and −2.63 months. Regarding generalization performance, the performance values on the external dataset were MAE of 1.85 months, RMSE of 2.59 months, and CC of 0.93. Among 13 SWS cases, 7 exceeded the limits of 95% agreement, and a proportional bias of age estimation based on myelination acceleration was exhibited below 12 months of age (P = 0.03).Conclusion: Stacked deep learning models automated the rule-based workflow in radiology and achieved highly accurate age estimation in infants and children up to 2 years of age.
著者
Akihiko Wada Kohei Tsuruta Ryusuke Irie Koji Kamagata Tomoko Maekawa Shohei Fujita Saori Koshino Kanako Kumamaru Michimasa Suzuki Atsushi Nakanishi Masaaki Hori Shigeki Aoki
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2018-0091, (Released:2018-12-03)
参考文献数
40
被引用文献数
22

Purpose: Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB) are representative disorders of dementia of the elderly and the neuroimaging has contributed to early diagnosis by estimation of alterations of brain volume, blood flow and metabolism. A brain network analysis by MR imaging (MR connectome) is a recently developed technique and can estimate the dysfunction of the brain network in AD and DLB. A graph theory which is a major technique of network analysis is useful for a group study to extract the feature of disorders, but is not necessarily suitable for the disorder differentiation at the individual level. In this investigation, we propose a deep learning technique as an alternative method of the graph analysis for recognition and classification of AD and DLB at the individual subject level.Materials and Methods: Forty-eight brain structural connectivity data of 18 AD, 8 DLB and 22 healthy controls were applied to the machine learning consisting of a six-layer convolution neural network (CNN) model. Estimation of the deep learning model to classify AD, DLB and non-AD/DLB was performed using the 4-fold cross-validation method.Results: The accuracy, average precision and recall of our CNN model were 0.73, 0.78 and 0.73, and the specificity precision and recall were 0.68 and 0.79 in AD, 0.94 and 0.65 in DLB and 0.73 and 0.75 in non-AD/DLB. The triangular probability map of the MR connectome revealed the probability of AD, DLB and non-AD/DLB in each subject.Conclusion: Our preliminary investigation revealed the adaptation of deep learning to the MR connectome and proposed its utility in the differentiation of dementia disorders at the individual subject level.