著者
Yumi Miyake Sachie Kusaka Isao Murata Michisato Toyoda
出版者
The Mass Spectrometry Society of Japan
雑誌
Mass Spectrometry (ISSN:2187137X)
巻号頁・発行日
vol.11, no.1, pp.A0105, 2022-12-20 (Released:2022-12-20)
参考文献数
29
被引用文献数
1 2

Boron neutron capture therapy (BNCT) is a cell-selective particle therapy for cancer using boron containing drugs. Boron compounds are accumulated in high concentration of tens ppm level of boron in target tumors to cause lethal damage to tumor tissue. The examination of boron distribution in target tumor and normal tissue is important to evaluate the efficiency of therapy. The matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is a powerful tool to visualize the distribution of target analyte in biological samples. In this manuscript, we report a trial to visualize the distribution of a typical BNCT drug, L-4-phenylalanine boronic acid (BPA) in a brain tumor model rat using MALDI-MSI technique. We performed a MALDI-MSI with high mass resolution targeting to [BPA+H]+ at m/z 210 in a BPA-treated rat brain section using a spiral orbit-type time of flight (SpiralTOF) mass spectrometer. Several BPA ion species, [BPA+H]+, [BPA−H2O+Na]+, [BPA+DHB−2H2O+Na]+ and [BPA+DHB−2H2O+K]+ were detected separate from peaks originated from biomolecules or matrix reagent by achieving the mass resolving power of approximately 20,000 (full width at half maximum; FWHM) at m/z 210. The mass images with 60 μm spatial resolution obtained from these BPA ion species in a mass window of 0.02 Da revealed their localization in the tumor region. Additionally, the mass image obtained from [BPA+H]+ also likely showed the distribution of BPA inside the tumor. MALDI-MSI with high mass resolution targeting to [BPA+H]+ has a great potential to visualize the distribution of BPA in brain tissue with tumor.
著者
Toshinobu Hondo Chihiro Ota Kohta Nakatani Yumi Miyake Hiroshi Furutani Takeshi Bamba Michisato Toyoda
出版者
The Mass Spectrometry Society of Japan
雑誌
Mass Spectrometry (ISSN:2187137X)
巻号頁・発行日
vol.11, no.1, pp.A0112, 2022-12-29 (Released:2022-12-29)
参考文献数
24
被引用文献数
1

Proton-transfer-reaction (PTR) mass spectrometry (MS), a widely used method for detecting trace-levels of volatile organic compounds in gaseous samples, can also be used for the analysis of small non-volatile molecules by using supercritical fluid as a transporter for the molecules. Supercritical fluid extraction (SFE) is a method that permits lipophilic compounds to be rapidly and selectively extracted from complex matrices. The combination of the high sensitivity of PTR MS with the SFE is a potentially novel method for analyzing small molecules in a single cell, particularly for the analysis of lipophilic compounds. We preliminarily evaluated this method for analyzing the components of a single HeLa cell that is fixed on a stainless steel frit and is then directly introduces the SFE extracts into the PTR MS. A total of 200/91 ions were observed in positive/negative ion mode time-of-flight mass spectra, and the masses of 11/10 ions could be matched to chemical formulae obtained from the LipidMaps lipids structure database. Using various authentic lipophilic samples, the method could be used to detect free fatty acids in the sub-femtomole to femtomole order in the negative ion mode, the femtomole to sub-picomole order for fat-soluble vitamins, and the picomole order for poly aromatic hydrocarbons in both the positive and negative ion mode.
著者
Chihiro Ota Toshinobu Hondo Yumi Miyake Hiroshi Furutani Michisato Toyoda
出版者
The Mass Spectrometry Society of Japan
雑誌
Mass Spectrometry (ISSN:2187137X)
巻号頁・発行日
vol.11, no.1, pp.A0108, 2022-12-20 (Released:2022-12-20)
参考文献数
24
被引用文献数
1 2

We have developed a rapid and sensitive analytical method for α-tocopherol and its oxidative products by combining online hyphenation of supercritical fluid extraction-supercritical fluid chromatography (SFC) with proton transfer reaction (PTR) ionization mass spectrometry (MS). α-Tocopherol is a well-known antioxidant that plays a vital role in the antioxidant defense system in plant cells. However, studies on the cellular mechanisms of α-tocopherol have been limited owing to the lack of a rapid analytical method, which limits the comparison of plant cells incubated in various conditions. Additionally, complex sample preparation and long chromatography separation times are required. Moreover, the majority of the involved molecules are a combination of isomers, which must be separated before applying tandem MS. α-Tocopherol produces the α-tocopheroxyl radical in the first step of its antioxidant function; another ion with the same mass may also be generated from the source. SFC separation effectively distinguished the observed ions from their oxidative products in the sample and those produced during the ionization reaction process. This method enabled the measurement of α-tocopherol and its oxidative products such as α-tocopheroxyl radical and α-tocopheryl quinone in approximately 3 min per sample, including the time required for sample preparation.