著者
Gentaro Shigita Tran Phuong Dung Mst. Naznin Pervin Thanh-Thuy Duong Odirich Nnennaya Imoh Yuki Monden Hidetaka Nishida Katsunori Tanaka Mitsuhiro Sugiyama Yoichi Kawazu Norihiko Tomooka Kenji Kato
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
pp.22071, (Released:2023-06-15)
被引用文献数
1

Numerous genetic resources of major crops have been introduced from around the world and deposited in Japanese National Agriculture and Food Research Organization (NARO) Genebank. Understanding their ge‍netic variation and selecting a representative subset (“core collection”) are essential for optimal management and efficient use of genetic resources. In this study, we conducted genotyping-by-sequencing (GBS) to characterize the genetic relationships and population structure in 755 accessions of melon genetic resources. The GBS identified 39,324 single-nucleotide polymorphisms (SNPs) that are distributed throughout the melon genome with high density (one SNP/10.6 kb). The phylogenetic relationships and population structure inferred using this SNP dataset are highly associated with the cytoplasm type and geographical origin. Our results strongly support the recent hypothesis that cultivated melon was established in Africa and India through multiple independent domestication events. Finally, we constructed a World Melon Core Collection that covers at least 82% of the genetic diversity and has a wide range of geographical origins and fruit mor‍phology. The genome-wide SNP dataset, phylogenetic relationships, population structure, and the core collection provided in this study should largely contribute to genetic research, breeding, and genetic resource preservation in melon.
著者
Katsunori Tanaka Mitsuhiro Sugiyama Gentaro Shigita Ryoma Murakami Thanh-Thuy Duong Yasheng Aierken Anna M Artemyeva Zharas Mamypbelov Ryuji Ishikawa Hidetaka Nishida Kenji Kato
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.73, no.2, pp.219-229, 2023 (Released:2023-06-06)
参考文献数
57

To uncover population structure, phylogenetic relationship, and diversity in melons along the famous Silk Road, a seed size measurement and a phylogenetic analysis using five chloroplast genome markers, 17 RAPD markers and 11 SSR markers were conducted for 87 Kazakh melon accessions with reference accessions. Kazakh melon accessions had large seed with exception of two accessions of weedy melon, Group Agrestis, and consisted of three cytoplasm types, of which Ib-1/-2 and Ib-3 were dominant in Kazakhstan and nearby areas such as northwestern China, Central Asia and Russia. Molecular phylogeny showed that two unique genetic groups, STIa-2 with Ib-1/-2 cytoplasm and STIa-1 with Ib-3 cytoplasm, and one admixed group, STIAD combined with STIa and STIb, were prevalent across all Kazakh melon groups. STIAD melons that phylogenetically overlapped with STIa-1 and STIa-2 melons were frequent in the eastern Silk Road region, including Kazakhstan. Evidently, a small population contributed to melon development and variation in the eastern Silk Road. Conscious preservation of fruit traits specific to Kazakh melon groups is thought to play a role in the conservation of Kazakh melon genetic variation during melon production, where hybrid progenies were generated through open pollination.