著者
Osamu Yanagisawa Tomoki Oshikawa Naoto Matsunaga Gen Adachi Koji Kaneoka
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0052, (Released:2020-09-01)
参考文献数
20
被引用文献数
3

Purpose: We aimed to evaluate the acute physiological effects of high-load deadlift exercise on the lumbar intervertebral discs using MR diffusion-weighted imaging (DWI).Methods: Fifteen volunteers (11 men and 4 women; 23.2 ± 3.3 years) without lumbar intervertebral disc degeneration performed deadlift exercise (70% of 1 repetition maximum, 6 repetitions, 5 sets, 90 s rest between sets) using a Smith machine. Sagittal MR diffusion-weighted images of the lumbar intervertebral discs were obtained using a 1.5-Tesla MR system with a spine coil before and immediately after the exercise. We calculated apparent diffusion coefficient (ADC; an index of water movement) of the nucleus pulposus from diffusion weighted images at all lumbar intervertebral discs (L1/2 through L5/S1).Results: All lumbar intervertebral discs showed significantly decreased ADC values immediately after deadlift exercise (L1/2, −2.8%; L2/3, −2.1%; L3/4, −2.8%; L4/5, −4.9%; L5/S1, −6.2%; P < 0.01). In addition, the rate of ADC decrease of the L5/S1 disc was significantly greater than those of the L1/2 (P = 0.017), L2/3 (P < 0.01), and L3/4 (P = 0.02) discs.Conclusion: The movement of water molecules within the lumbar intervertebral discs is suppressed by high-load deadlift exercise, which would be attributed to mechanical stress on the lumbar intervertebral discs during deadlift exercise. In particular, the L5/S1 disc is subjected to greater mechanical stress than the other lumbar intervertebral discs.
著者
Hiroshi Akuzawa Atsushi Imai Satoshi Iizuka Naoto Matsunaga Koji Kaneoka
出版者
The Society of Physical Therapy Science
雑誌
Journal of Physical Therapy Science (ISSN:09155287)
巻号頁・発行日
vol.28, no.12, pp.3458-3462, 2016 (Released:2016-12-27)
参考文献数
19
被引用文献数
4 17

[Purpose] The purpose of the study was to assess the muscle activity change of the tibialis posterior, flexor digitorum longus, and peroneus longus during gait with orthoses. [Subjects and Methods] Sixteen healthy males participated in this study. Activity of each muscle was measured by using fine-wire and surface electromyography. Gait task was performed by the participants barefoot, with footwear and with orthoses. The electromyography data from a stance phase of each gait trial were used for analysis. The stance phase was divided into contact, midstance, and propulsion phases. The data from ten participants were extracted for final analysis, as electromyography measurements were unsuccessful for the other six. [Results] The results demonstrated that orthoses significantly reduced the tibialis posterior muscle activity in the propulsion phase compared to that in the barefoot condition. Although there was a significant difference in the midstance phase, post hoc analysis did not indicate significant differences among the phases. No significant electromyography amplitude change was detected in flexor digitorum longus and peroneus longus. [Conclusion] Orthothes reduced the tibialis posterior activity level during gait. This result may be beneficial for patients with injuries related to excessive activity of tibialis posterior.