- 著者
-
Kazuki ISHIHARA
Kentaro YONEYAMA
Tomoki SATO
Hiroaki WATANABE
Noboru ITOUYAMA
Akira KAWASAKI
Ken MATSUOKA
Jiro KASAHARA
Akiko MATSUO
Ikkoh FUNAKI
- 出版者
- THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
- 雑誌
- TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES (ISSN:05493811)
- 巻号頁・発行日
- vol.66, no.2, pp.46-58, 2023 (Released:2023-03-04)
- 参考文献数
- 57
- 被引用文献数
-
4
Rotating detonation combustors (RDCs) are among the combustors that use supersonic combustion waves known as detonation waves, and are expected to simplify engine systems and improve thermal efficiency due to their supersonic combustion and compression performance using shock waves. Research is also being actively conducted worldwide on a cylindrical RDC; a RDC without an inner cylinder, which is expected to simplify and downsize the combustor. However, most of the research was performed using gas propellants, and liquid propellants were rarely used. Since liquid propellants are used in many combustors, it is important to evaluate the performance of RDCs with liquid propellants. In this study, a cylindrical RDC with a liquid ethanol–gas oxygen mixture was constructed and tested at a flow rate of 31.5 ± 5.0 g/s, an equivalence ratio of 0.46–1.39, and a back pressure of 14.5 ± 2.5 kPa. The thrust was shown to depend strongly on the combustor bottom pressure history. In addition, the start-up process of the cylindrical RDC with liquid fuel was clarified by self-luminous and CH* radical visualizations. It was found that the detonation wavefront propagated at a distance of 2–3 mm from the combustor bottom, and the main combustion region was 10–15 mm in height.