著者
Yongshou YANG Kan TAKAHARA Thanutchaporn KUMRUNGSEE Akiko KIMOTO Fumio SHIMAMOTO Norihisa KATO
出版者
Center for Academic Publications Japan
雑誌
Journal of Nutritional Science and Vitaminology (ISSN:03014800)
巻号頁・発行日
vol.65, no.5, pp.443-450, 2019-10-31 (Released:2019-10-31)
参考文献数
40
被引用文献数
1 3

The effect of low-dose of ethanol consumption on the development of colon cancer is unclear. This study aimed to investigate the effects of low-dose ethanol (0.5%, 1%, and 2% [v/v] ethanol in drinking water) for 28 wk on colon tumor incidence in rats injected with 1,2-dimethylhydrazine. Body weight, fluid and food consumption, and the total numbers of colon adenomas (mild-, moderate-, and severe-grade dysplasia) per rat were unaffected by ethanol consumption. However, the numbers of severe-grade dysplasia were significantly reduced by 1% ethanol compared with the control (0% ethanol; −93%) but not by 0.5% and 2% ethanol. Although the numbers of total adenocarcinomas were unaffected, those of total of adenomas and adenocarcinomas together were significantly reduced by 0.5% and 1% ethanol (−39% and −41%, respectively). Intriguingly, real-time PCR assay indicated the abundance of cecal Clostridium leptum (a putative immunosuppressor) was the least in rats received 1% ethanol. Furthermore, 1% ethanol markedly increased colonic mRNA of IL-6, a putative suppressor of regulatory T-cells and cytoprotector. This study provides the first evidence for the potential of 1% ethanol, but not 2% ethanol, to prevent colon tumorigenesis in rats, supporting the J-curve hypothesis of the effect of low-dose alcohol on health. Further, the modulation of C. leptum and expression of IL-6, potentially linking to carcinogenesis, by 1% ethanol may provide an insight into the underlying mechanisms of the anti-colon tumor effect.
著者
Norihisa KATO Seiji SATO Atsushi YAMANAKA Hideyuki YAMADA Naozumi FUWA Masakazu NOMURA
出版者
Japan Society for Bioscience, Biotechnology, and Agrochemistry
雑誌
Bioscience, Biotechnology, and Biochemistry (ISSN:09168451)
巻号頁・発行日
vol.62, no.1, pp.145-147, 1998 (Released:2005-03-30)
参考文献数
12
被引用文献数
302

This study provided the first evidence for an antioxidant action of the silk protein sericin by showing that sericin suppressed in vitro lipid peroxidation. Furthermore, sericin was found to inhibit tyrosinase activity. These results suggest that sericin may be a valuable natural ingredient for food and cosmetic industries.
著者
Churan FU Yongshou YANG Thanutchaporn KUMRUNGSEE Akiko KIMOTO Hanae IZU Norihisa KATO
出版者
Center for Academic Publications Japan
雑誌
Journal of Nutritional Science and Vitaminology (ISSN:03014800)
巻号頁・発行日
vol.66, no.6, pp.553-560, 2020-12-31 (Released:2020-12-31)
参考文献数
44
被引用文献数
2

The effects of low-dose alcohol on experimental animals are unclear. This study examined plasma metabolites in senescence-accelerated mice 8 (SAMP8) given low-dose ethanol, and compared them with aging progress and skeletal muscle strength. Male SAMP8 mice (10-wk-old) were given drinking water containing 0% (control), 1%, 2%, or 5% (v/v) ethanol for 14 wk. Compared with the control group, only mice who consumed 1% ethanol experienced a lower senescence score at 18 and 23 wk, as well as an increased limb grip strength at 21 wk. Plasma metabolites of control, 1% and 2% ethanol groups were analyzed by capillary electrophoresis–time-of-flight mass spectrometry (CE-TOF/MS). Among the 7 metabolites affected by ethanol, notewhorthy is the positive association of the ethanol levels in drinking water with the levels of α-ketoglutarate (antioxidant and anti-inflammatory metabolite) and hippurate (antioxidant and microbial co-metabolite) (p<0.05). Intriguingly, the levels of 2-hydroxyisobutyrate (the biomarker of energy metabolism and microbial co-metabolite) were higher in the 1% ethanol group (p<0.05), but not in the 2% ethanol group as compared to the control. Furthermore, the levels of some of the metabolites affected were correlated with some variables in the grading score of senescence and muscle strength. This study provides a novel insight into how low-dose ethanol in SAMP8 mice modulates the levels of circulating metabolites relating to chronic disease risk.