著者
NORIKO SHIMASAKI AKIRA OKAUE RITSUKO KIKUNO KATSUAKI SHINOHARA
出版者
The Society for Antibacterial and Antifungal Agents, Japan
雑誌
Biocontrol Science (ISSN:13424815)
巻号頁・発行日
vol.23, no.2, pp.61-69, 2018 (Released:2018-06-16)
参考文献数
20
被引用文献数
6 12

Exact evaluation of the performance of surgical masks and biohazard protective clothing materials against pathogens is important because it can provide helpful information that healthcare workers can use to select suitable materials to reduce infection risk. Currently, to evaluate the protective performance of nonwoven fabrics used in surgical masks against viral aerosols, a non-standardized test method using phi-X174 phage aerosols is widely performed because actual respiratory viruses pose an infection risk during testing and the phage is a safe virus to humans. This method of using a phage is simply modified from a standard method for evaluation of filter performance against bacterial aerosols using Staphylococcus aureus, which is larger than virus particles. However, it is necessary to perform such evaluations based on the size of the actual pathogen particles. Thus, we developed a new method that can be performed safely using inactivated viral particles and can quantitate the influenza virus in aerosols by antigen-capture ELISA (Shimasaki et al., 2016a) . In this study, we used three different microbial aerosols of phi-X174 phage, influenza virus, and S. aureus and tested the filter efficiency by capturing microbial aerosols for two medical nonwoven fabrics. We compared the filter efficiency against each airborne microbe to analyze the dependency of filter efficiency on the microbial particle size. Our results showed that against the three types of spherical microbe particles, the filter efficiencies against influenza virus particles were the lowest and those against phi-X174 phages were the highest for both types of nonwoven fabrics. The experimental results mostly corresponded with theoretical calculations. We conclude that the filter efficiency test using the phi-X174 phage aerosol may overestimate the protective performance of nonwoven fabrics with filter structure compared to that against real pathogens such as the influenza virus.
著者
Noriko Shimasaki Hideaki Morikawa
出版者
Fuji Technology Press Ltd.
雑誌
Journal of Disaster Research (ISSN:18812473)
巻号頁・発行日
vol.16, no.1, pp.61-69, 2021-01-30 (Released:2021-01-30)
参考文献数
49
被引用文献数
4

A new infectious disease caused by a novel coronavirus (COVID-19) has spread rapidly worldwide in 2020. The COVID-19 pandemic in Japan can be viewed as an urban disaster because transmission of this respiratory disease tends to occur in densely populated areas. A scientific understanding of the pathogen itself, the cause of the disaster (infectious disease), as well as infection control measures, are important to implement robust and appropriate countermeasures. This review discribes the features, especially the modes of transmission, of COVID-19 and the principles by which infection control is possible using one of the most effective infection control measures – personal protective equipment (PPE). Because COVID-19 is often transmitted to others by asymptomatic individuals through droplets, even those who are unaware of their infection should wear masks to prevent the spread of droplets that may contain the virus and effectively control the spread of disease. However, given the worldwide competition for masks and the urgent requirement of effective controls, it is necessary to conduct further research to establish a system that can supply adequate numbers of masks to regions where many people are infected in the country, with no shortage of masks, in order to make the country more resilient to disasters caused by infectious diseases in the future.