著者
Daisuke NISHIO-HAMANE Takeshi YAJIMA Norimasa SHIMOBAYASHI Masayuki OHNISHI Takefumi NIWA
出版者
Japan Association of Mineralogical Sciences
雑誌
Journal of Mineralogical and Petrological Sciences (ISSN:13456296)
巻号頁・発行日
pp.230711, (Released:2023-10-25)

Asagiite, a newly-discovered mineral having the ideal formula NiCu4(SO4)2(OH)6·6H2O, is a member of the ktenasite group, representing a Ni analogue. It occurs as a secondary mineral on smithsonite aggregates that overlie fractures in a serpentinite found in the Nakauri mine within Aichi Prefecture, Japan. Asagiite exhibits a unique pale blue-green coloration and so is named after the traditional Japanese color “asagi-iro.” Asagiite occurs as thin plate-like crystals with perfect cleavage along {001} planes. The crystal size of this mineral is typically 0.1 to 0.2 mm, although in rare cases crystals may range up to 0.5 mm in length. These crystals are vitreous, transparent and non-fluorescent and have also been shown to be brittle with a Mohs hardness of 2½. The measured and calculated densities of asagiite are 2.90(3) and 2.92 g·cm-3, respectively. This mineral is optically biaxial (-) with α = 1.577(2), β = 1.620(2) and γ = 1.631(2) together with a 2Vcalc value of 52.4°. Electron microprobe analyses determined an empirical formula (based on 2S) of (Cu3.44Ni0.76Zn0.59Co0.18Fe0.01)Σ4.98S2O7.95(OH)6.05·6H2O. Based on single crystal X-ray diffraction data, the structure is monoclinic with space group P21/c and unit cell parameters a = 5.6095(8), b = 6.1259(7), c = 23.758(3) Å, β = 95.288(4)°, V = 812.92(17) Å3 and Z = 2. Single-crystal structural determination also gives an R1 value of 0.0303. The seven most intense peaks in the powder X-ray diffraction pattern [d in Å (I/I0) hkl] were found to be 11.830 (100) 002, 5.912 (64) 004, 4.845 (55) 013, 3.920 (45) 006, 2.953 (33) 008, 2.668 (57) 202 and 2.571 (36) 123, with unit cell parameters of a = 5.614(5), b = 6.108(8), c = 23.758(18) Å, β = 95.62(7)° and V = 810.8(14) Å3.
著者
Yuma MORIMITSU Yohei SHIROSE Satomi ENJU Kenji TSURUTA Norimasa SHIMOBAYASHI
出版者
Japan Association of Mineralogical Sciences
雑誌
Journal of Mineralogical and Petrological Sciences (ISSN:13456296)
巻号頁・発行日
pp.201130d, (Released:2021-04-27)

Zaïrite was found from the quartz vein penetrating into the metamorphosed mudstone of the Wazuka Unit in Ishidera area, Wazuka–cho, Kyoto Prefecture, Japan, which is the first occurrence in Japan. Zaïrite occurs as bright–yellow granular crystals (20–30 µm) in a cavity formed by the leaching of fluorapatite with native bismuth inclusion. The chemical composition of zaïrite from Ishidera was closer to the ideal chemical composition, comparing with the zaïrite from type locality including Al. The empirical formula from electron probe microanalyzer (EPMA) analysis on the basis of O = 8, OH− = 6 was (Bi0.70Ca0.23)Σ0.93Fe3+2.91(P2.04S0.09O8)(OH)6. The unit cell parameters obtained from the X–ray diffraction (XRD) pattern were a = 7.311(3) Å and c = 16.407(7) Å, larger than the type locality due to difference in chemical composition.
著者
Daisuke NISHIO–HAMANE Masayuki OHNISHI Norimasa SHIMOBAYASHI Koichi MOMMA Ritsuro MIYAWAKI Sachio INABA
出版者
Japan Association of Mineralogical Sciences
雑誌
Journal of Mineralogical and Petrological Sciences (ISSN:13456296)
巻号頁・発行日
vol.115, no.3, pp.286-295, 2020 (Released:2020-06-24)
参考文献数
30

Petersite–(La) is a new mineral of the petersite series in the mixite group with an ideal formula of Cu6La(PO4)3(OH)6·3H2O from Ohgurusu, Kiwa–cho, Kumano City, Mie Prefecture, Japan. The mixite–group minerals occur in small cavities coated by chrysocolla developed along quartz veins. Four members from different cavities have been identified: petersite–(La), petersite–(Ce), petersite–(Y), and agardite–(La). Petersite–(La) occurs as a radial aggregate formed by acicular to hexagonal columnar crystals of yellowish green color. Crystals are elongated along [001] and the prismatic face is probably formed by {001} and {100} or {110}. It is non–fluorescent in UV light. Crystals are brittle, cleavage and parting are non–observed, and fracture is uneven. These characteristics are common in other mixite–group minerals. The calculated density of petersite–(La) is 3.33 g/cm3, based on the empirical formula and powder XRD data. It is optically uniaxial positive with ω = 1.680(3) and ε = 1.767(3) (white light), and pleochroism varies from light green to yellowish green. Based on the WDS analysis, the empirical formula of petersite–(La) calculated on the basis of P + As + Si = 3 is (Cu5.692Fe0.010)Σ5.702[(La0.148Ce0.122Nd0.117Y0.086Sm0.022)Σ0.495Ca0.372]Σ0.866(P1.890As0.799Si0.311)Σ3O10.320(OH)7.680·3H2O. Petersite–(La) is hexagonal (P63/m) with a = 13.367(2) Å, c = 5.872(2) Å, and V = 908.7(4) Å3 (Z = 2). The eight strongest lines of petersite–(La) in the powder XRD pattern [d in Å(I/I0)(hkl )] are 11.578(100)(100), 4.377(28)(210 + 120), 3.509(18)(211 + 121), 3.211(10)(310 + 130), 2.898(14)(221, 400), 2.656(10)(320 + 230), 2.526(11)(410 + 140), and 2.438(25)(212 + 122). Petersite–(La) is the third defined member in the petersite series and corresponds to the La–dominant analogue of petersite–(Y) and petersite–(Ce).