著者
Yu Fukuoka El-Sayed Khafagy Takahiro Goto Noriyasu Kamei Kozo Takayama Nicholas A. Peppas Mariko Takeda-Morishita
出版者
The Pharmaceutical Society of Japan
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.41, no.5, pp.811-814, 2018-05-01 (Released:2018-05-01)
参考文献数
14
被引用文献数
24

In previous studies we showed that the complexation hydrogels based in poly(methacrylic acid-g-ethylene glycol) [P(MAA-g-EG)] rapidly release insulin in the intestine owing to their pH-dependent complexation properties; they also exhibit a high insulin-loading efficiency, enzyme-inhibiting properties, and mucoadhesive characteristics. Cell-penetrating peptides (CPPs), such as oligoarginines [hexa-arginine (R6), comprising six arginine residues], have been employed as useful tools for the oral delivery of therapeutic macromolecules. The aim of our study was to investigate the combination strategy of using P(MAA-g-EG) hydrogels with R6-based CPPs to improve the intestinal absorption of insulin. A high efficiency of loading into crosslinked P(MAA-g-EG) hydrogels was observed for insulin (96.1±1.4%) and R6 (46.6±3.8%). In addition, immediate release of the loaded insulin and R6 from these hydrogels was observed at pH 7.4 (80% was released in approximately 30 min). Consequently, a strong hypoglycemic response was observed (approximately 18% reduction in blood glucose levels) accompanied by an improvement in insulin absorption after the co-administration of insulin-loaded particles (ILP) and R6-loaded particles (ALP) into closed rat ileal segments compared with that after ILP administration alone. These results indicate that the combination of P(MAA-g-EG) hydrogels with CPPs may be a promising strategy for the oral delivery of various insulin preparations as an alternative to conventional parenteral routes.
著者
Risako Morishita Miki Shimada Minami Nagao Shin Shimizu Noriyasu Kamei Mariko Takeda-Morishita
出版者
The Pharmaceutical Society of Japan
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.46, no.2, pp.343-347, 2023-02-01 (Released:2023-02-01)
参考文献数
14
被引用文献数
1

Owing to their unique physicochemical properties and diverse biological effects, ultrafine bubbles (UFBs) have recently been expected to be utilized for industrial and biological purposes. Thus, this study investigated the biological safety of UFBs in water for living beings in drinking the water with a view to future use in health sciences. In this study, we used H2-filled UFBs (NanoGAS®) that can hold hydrogen in the aqueous phase for a long time. Mice were randomly assigned to one of three groups: those receiving NanoGAS® water, reverse osmosis water, or natural mineral water, and they ingested it ad libitum for one month or three months. As a result, subchronic drinking of NanoGAS® water does not affect either the common blood biochemical parameters or the health of the organs and mucosal membranes. Our results, for the first time, scientifically demonstrated the biological safety of H2-filled UFBs water for subchronic oral consumption.