著者
Duc Pham Leo Vijay Pugazhenthi Georg Tobias Götz Rik W. De Doncker
出版者
The Institute of Electrical Engineers of Japan
雑誌
IEEJ Journal of Industry Applications (ISSN:21871094)
巻号頁・発行日
vol.10, no.6, pp.748-754, 2021-11-01 (Released:2021-11-01)
参考文献数
12

Owing to the robust structure of switched reluctance machines, high-speed operations are preferred to achieve higher power densities. Generally, at high speeds, single pulse control is applied. However, its control parameter set is not unique. This paper proposes an algorithm based on design of experiments that simultaneously allows the calculation of optimal control parameters for an operating area and the minimization of the total machine losses. The designed experiments are finite-element analyses (FEAs) considering both iron and copper losses. A Pareto search algorithm solves the proposed multi-objective optimization problem. The results for different response surfaces are compared considering the errors in torque production and machine loss prediction. A reduced response surface based on 15 FE-runs shows a mean error of 1.9%, whereas the maximum error is 6.3% for machine losses within the validation operating area.
著者
Stefan Quabeck Wenbo Shangguan Daniel Scharfenstein Rik W. De Doncker
出版者
The Institute of Electrical Engineers of Japan
雑誌
IEEJ Journal of Industry Applications (ISSN:21871094)
巻号頁・発行日
vol.10, no.6, pp.688-693, 2021-11-01 (Released:2021-11-01)
参考文献数
20

Induction machines are used in a wide range of industrial applications due to their simplicity, ruggedness, and low price. Despite their robustness, induction machines eventually fail due to a variety of mechanisms. Most faults exhibit specific frequency components in the motor current spectrum, which allows for fault detection. Many classical fault detection methods have been developed for grid-connected machines with relatively fixed operating points. In inverter-driven machines with a wide operating range, these methods cannot reliably detect and classify faults. Machine learning methods have been successfully used for various classification tasks. This study therefore combines classical fault detection approaches with various fault classification algorithms to reliably detect induction machine faults over a wide operating range.The developed fault classification method is evaluated using steady-state measurements on an inverter-fed 5.5 kW induction machine. The algorithm shows promising fault detection and classification capabilities, achieving an accuracy of 97.4% over a wide load range.