著者
Lihua ZHAO Ryutaro ICHISE
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE TRANSACTIONS on Information and Systems (ISSN:09168532)
巻号頁・発行日
vol.E96-D, no.1, pp.40-50, 2013-01-01

The Linking Open Data (LOD) cloud is a collection of linked Resource Description Framework (RDF) data with over 31 billion RDF triples. Accessing linked data is a challenging task because each data set in the LOD cloud has a specific ontology schema, and familiarity with the ontology schema used is required in order to query various linked data sets. However, manually checking each data set is time-consuming, especially when many data sets from various domains are used. This difficulty can be overcome without user interaction by using an automatic method that integrates different ontology schema. In this paper, we propose a Mid-Ontology learning approach that can automatically construct a simple ontology, linking related ontology predicates (class or property) in different data sets. Our Mid-Ontology learning approach consists of three main phases: data collection, predicate grouping, and Mid-Ontology construction. Experiments show that our Mid-Ontology learning approach successfully integrates diverse ontology schema with a high quality, and effectively retrieves related information with the constructed Mid-Ontology.
著者
Lankeshwara MUNASINGHE Ryutaro ICHISE
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE TRANSACTIONS on Information and Systems (ISSN:09168532)
巻号頁・発行日
vol.E95-D, no.3, pp.821-828, 2012-03-01
被引用文献数
30

Link prediction in social networks, such as friendship networks and coauthorship networks, has recently attracted a great deal of attention. There have been numerous attempts to address the problem of link prediction through diverse approaches. In the present paper, we focus on the temporal behavior of the link strength, particularly the relationship between the time stamps of interactions or links and the temporal behavior of link strength and how link strength affects future link evolution. Most previous studies have not sufficiently discussed either the impact of time stamps of the interactions or time stamps of the links on link evolution. The gap between the current time and the time stamps of the interactions or links is also important to link evolution. In the present paper, we introduce a new time-aware feature, referred to as time score, that captures the important aspects of time stamps of interactions and the temporality of the link strengths. We also analyze the effectiveness of time score with different parameter settings for different network data sets. The results of the analysis revealed that the time score was sensitive to different networks and different time measures. We applied time score to two social network data sets, namely, Facebook friendship network data set and a coauthorship network data set. The results revealed a significant improvement in predicting future links.