著者
Kouichi Yoshizaki Hari Prasad Devkota Hiroharu Fujino Shoji Yahara
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.61, no.3, pp.344-350, 2013-03-01 (Released:2013-03-01)
参考文献数
24
被引用文献数
9 24

A new dammarane-type triterpenoid saponin, chikusetsusaponin VII (1), and nineteen known triterpenoid saponins, ginsenoside Rb1 (2), ginsenoside Rb3 (3), ginsenoside Rc (4), ginsenoside Rd (5), ginsenoside Re (6), ginsenoside Rg1 (7), ginsenoside Rg2 (8), ginsenoside Rh1 (9), notoginsenoside R1 (10), notoginsenoside R2 (11), notoginsenoside Fe (12), chikusetsusaponin IVa (13), chikusetsusaponin IV (14), chikusetsusaponin V (15), chikusetsusaponin VI (16), chikusetsusaponin FK6 (17), gypenoside XVII (18), 28-desglucosylchikusetsusaponin IV (19), and zingibroside R1 (20), were isolated from rhizomes, taproots, and lateral roots of Panax japonicus C. A. Meyer, so-called “Satsuma-ninjin,” grown in southern Miyazaki Prefecture, Japan. The structure of new chikusetsusaponin VII was elucidated on the basis of spectral and physicochemical evidence. Although the chemical composition of the rhizome was found to be similar to that of the “Chikusetsu-ninjin,” the saponin composition of lateral root of “Satsuma-ninjin” was found to be close to that of lateral root of P. ginseng. The total yield of oleanolic acid saponins of the taproot was less than that of rhizome, but the total yield of dammarane-type saponins of the taproot was found to be similar to that of rhizome.
著者
Khem Raj Joshi Hari Prasad Devkota Takashi Watanabe Shoji Yahara
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.62, no.2, pp.191-195, 2014-02-01 (Released:2014-02-01)
参考文献数
24
被引用文献数
4 5

Three new glycosides: thotneoside A (quercetin 3-O-(6″-O-phenylacetyl)-β-D-galactopyranoside) (1), thotneoside B (quercetin 3-O-(6″-O-phenylacetyl)-β-D-glucopyranoside) (2) and thotneoside C (3-methyl-2-butenoic acid 1-O-β-D-glucopyranoside) (3), together with nine known compounds; quercetin (4), quercetin 3-O-β-D-galactopyranoside (5), quercetin 3-O-(6″-O-galloyl)-β-D-galactopyranoside (6), quercetin 3-O-β-D-galacturonopyranoside (7), quercetin 3-O-β-D-glucuronopyranoside (8), quercetin 3-O-α-L-rhamnopyranoside (9), rutin (10), quercetin 3-O-α-L-arabinopyranoside (11) and 2,4,6-trihydroxyacetophenone 2-O-β-D-glucopyranoside (12) have been isolated from the shade dried leaves of Aconogonon molle, commonly known as “Thotne″ in Nepal. The structures were elucidated on the basis of chemical and spectroscopic methods. All of these compounds were isolated for the first time from A. molle and their in vitro antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. Quercetin (4) and its glycosides (1–2, 5–11) showed potent free radical scavenging activity.