著者
Md Mahadi Hassan Ahmed Fouad Abdelwahab Mohammed Khaled M. Elamin Hari Prasad Devkota Yoshitaka Ohno Keiichi Motoyama Taishi Higashi Teruko Imai
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.68, no.11, pp.1117-1120, 2020-11-01 (Released:2020-11-01)
参考文献数
7
被引用文献数
5

Zerumbone is a multifunctional compound which shows various biological activities, such as antitumor activity, anti-inflammatory activity, antiulcer activity, etc. However, to use Zerumbone as functional foods or medicines, its pharmaceutical properties such as solubility should be improved. In the present study, we prepared its inclusion complexes with various cyclodextrin (CyD) derivatives, and evaluated their solubility, release profile of the drug and cytotoxic activity. Among 11 CyDs, sulfobutylether (SBE)-β-CyD showed the highest solubilizing effect for Zerumbone. Phase solubility diagrams of SBE-β-CyD/Zerumbone in 10% methanol solution showed AL type, and the stability constant was 756 M−1. SBE-β-CyD also formed the solid complex with Zerumbone by kneading for 90 min. Importantly, the dissolution rate of Zerumbone was improved by complexation with SBE-β- and hydroxypropyl (HP)-β-CyDs, and its supersaturation was maintained for several hours. The solubilizing effects by SBE-β-CyD was greater than that of HP-β-CyD. Moreover, SBE-β-CyD/Zerumbone complex also retained the cytotoxic activity of Zerumbone. These results suggest that CyDs, especially SBE-β-CyD, were useful to improve the solubility of Zerumbone.
著者
Masamichi Inoue Kyosuke Muta Ahmed Fouad Abdelwahab Mohammed Risako Onodera Taishi Higashi Kenta Ouchi Mitsuharu Ueda Yukio Ando Hidetoshi Arima Hirofumi Jono Keiichi Motoyama
出版者
The Pharmaceutical Society of Japan
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.45, no.11, pp.1660-1668, 2022-11-01 (Released:2022-11-01)
参考文献数
37
被引用文献数
4

Hereditary amyloidgenic transthyretin (ATTR) amyloidosis is caused by a genetic point-mutated transthyretin such as TTR Val30Met (TTR V30M), since it forms protein aggregates called amyloid resulting in the tissue accumulation and functional disorders. In particular, ATTR produced by retinal pigment epithelial cells often causes ATTR ocular amyloidosis, which elicits deterioration of ocular function and ultimately blindness. Therefore, development of novel therapeutic agents is urgently needed. Genome-editing technology using Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated proteins (CRISPR-Cas9) system is expected to be a therapeutic approach to treat genetic diseases, such as ATTR amyloidosis caused by a point mutation in TTR gene. Previously, we reported that glucuronylglucosyl-β-cyclodextrin conjugated with a polyamidoamine dendrimer (CDE) had excellent gene transfer ability and that underlying dendrimer inhibited TTR aggregation. Conversely, folate receptors are known to be highly expressed in retina; thus, folate has potential as a retinal target ligand. In this study, we prepared a novel folate-modified CDE (FP-CDE) and investigated its potential as a carrier for the retinal delivery of TTR-CRISPR plasmid DNA (pDNA). The results suggested that FP-CDE/TTR-CRISPR pDNA could be taken up by retinal pigment epithelial cells via folate receptors, exhibited TTR V30M amyloid inhibitory effect, and suppressed TTR production via the genome editing effect (knockout of TTR gene). Thus, FP-CDE may be useful as a novel therapeutic TTR-CRISPR pDNA carrier in the treatment of ATTR ocular amyloidosis.
著者
Taishi Higashi Daisuke Iohara Keiichi Motoyama Hidetoshi Arima
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.66, no.3, pp.207-216, 2018-03-01 (Released:2018-03-01)
参考文献数
174
被引用文献数
40

Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed “supramolecular pharmaceutical sciences,” which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.