著者
Goichi Beck Rika Yamashita Chizu Saeki Takuya Ogawa Mikito Shimizu Hideki Mochizuki
出版者
The Japanese Society of Internal Medicine
雑誌
Internal Medicine (ISSN:09182918)
巻号頁・発行日
pp.4601-20, (Released:2020-05-26)
参考文献数
23
被引用文献数
1

We herein report a 56-year-old Japanese woman who had been diagnosed with hereditary angioedema. She experienced progressing muscle weakness and pain in the upper and lower extremities. Blood tests revealed a marked increase in creatine kinase levels; however, myositis-specific autoantibodies were not detected. Serum C1-inhibitor activity and C4 levels were low. A muscle biopsy showed mild muscle fiber necrosis and C5b-9 deposition in the endomysial capillary vessel walls and sarcolemma, mimicking necrotizing myopathy. These results suggest that C1-inhibitor deficiency induces myositis-like symptoms through the activation of the complement pathway and deposition of the membrane attack complex in the muscles.
著者
Kenichi Kawano Fumiaki Yokoyama Kouhei Kamasaka Jun Kawamoto Takuya Ogawa Tatsuo Kurihara Shiroh Futaki
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.69, no.11, pp.1075-1082, 2021-11-01 (Released:2021-11-01)
参考文献数
38
被引用文献数
4

Extracellular vesicles (EVs) have emerged as important targets in biological and medical studies because they are involved in diverse human diseases and bacterial pathogenesis. Although antibodies targeting the surface biomarkers are widely used to detect EVs, peptide-based curvature sensors are currently attracting an attention as a novel tool for marker-free EV detection techniques. We have previously created a curvature-sensing peptide, FAAV and applied it to develop a simple and rapid method for detection of bacterial EVs in cultured media. The method utilized the fluorescence/Förster resonance energy transfer (FRET) phenomenon to achieve the high sensitivity to changes in the EV amount. In the present study, to develop a practical and easy-to-use approach that can detect bacterial EVs by peptides alone, we designed novel curvature-sensing peptides, N-terminus-substituted FAAV (nFAAV) peptides. The nFAAV peptides exerted higher α-helix-stabilizing effects than FAAV upon binding to vesicles while maintaining a random coil structure in aqueous solution. One of the nFAAV peptides showed a superior binding affinity for bacterial EVs and detected changes in the EV amount with 5-fold higher sensitivity than FAAV even in the presence of the EV-secretory bacterial cells. We named nFAAV5, which exhibited the high ability to detect bacterial EVs, as an EV-sensing peptide. Our finding is that the coil–α-helix structural transition of the nFAAV peptides serve as a key structural factor for highly sensitive detection of bacterial EVs.