著者
Nguyen Van THUAN Satoshi KISHIGAMI Teruhiko WAKAYAMA
出版者
日本繁殖生物学会
雑誌
Journal of Reproduction and Development (ISSN:09168818)
巻号頁・発行日
vol.56, no.1, pp.20-30, 2010 (Released:2010-03-05)
参考文献数
136
被引用文献数
35 96

It has now been 13 years since the first cloned mammal Dolly the sheep was generated from somatic cells using nuclear transfer (SCNT). Since then, this technique has been considered an important tool not only for animal reproduction but also for regenerative medicine. However, the success rate is still very low and the mechanisms involved in genomic reprogramming are not yet clear. Moreover, the NT technique requires donated fresh oocyte, which raises ethical problems for production of human cloned embryo. For this reason, the use of induced pluripotent stem cells for genomic reprogramming and for regenerative medicine is currently a hot topic in this field. However, we believe that the NT approach remains the only valid way for the study of reproduction and basic biology. For example, only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification, and it can generate offspring from a single cell or even a frozen dead body. Thanks to much hard work by many groups, cloning success rates are increasing slightly year by year, and NT cloning is now becoming a more applicable method. This review describes how to improve the efficiency of cloning, the establishment of clone-derived embryonic stem cells and further applications.
著者
Kazuo YAMAGATA Rinako SUETSUGU Teruhiko WAKAYAMA
出版者
The Society for Reproduction and Development
雑誌
Journal of Reproduction and Development (ISSN:09168818)
巻号頁・発行日
vol.55, no.3, pp.343-350, 2009 (Released:2009-07-02)
参考文献数
33
被引用文献数
58 75

Mammalian preimplantation embryonic development is achieved by tightly coordinated regulation of a great variety of temporal and spatial changes. Therefore, it would be valuable to analyze these events three-dimensionally and dynamically. We have previously developed a live-cell imaging method based on the expression of fluorescent proteins, using mRNA injection and time-lapse florescence microscopy. However, with conventional fluorescent microscopy, three-dimensional images could not be obtained due to the thickness of the embryos and the optical problem in which `out-of focus blur' cannot be eliminated. Moreover, as the repeated exposure of intense excitation light to the cell yields phototoxicity, long-term observation was detrimental to embryonic development. Here, we improved our imaging system to enable six-dimensional live-cell imaging of mouse preimplantation embryos (x, y and z axes, time-lapse, multicolor and multisample). Importantly, by improving the imaging devices and optimizing the conditions for imaging, such as intensity of excitation and time intervals for image acquisition, the procedure itself was not detrimental to full-term development, although it is a prolonged imaging process. For example, live pups were obtained from embryos to which two different wavelengths of excitation (488 and 561 nm) were applied at 7.5-min intervals for about 70 h, and 51 images were acquired in the z axis at each time point; thus, a total of 56,814 fluorescent images were taken. All the pups were healthy, reproductively normal and not transgenic. Thus, this live-cell imaging technology is safe for full-term mouse development. This offers a novel approach for developmental and reproductive research in that it enables both retrospective and prospective analyses of development. It might also be applicable to assessment of embryo quality in fields such as human reproductive technology and production animal research.
著者
Rei INOUE Kana HARADA Sayaka WAKAYAMA Masatoshi OOGA Teruhiko WAKAYAMA
出版者
THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
雑誌
Journal of Reproduction and Development (ISSN:09168818)
巻号頁・発行日
pp.2020-059, (Released:2020-06-06)
被引用文献数
7

Mouse oocytes are generally collected after euthanasia. However, if oocytes were collected without euthanasia, then mice could be used to collect oocytes again after recovery. This condition is especially useful for mice that are genotypically rare. In this study, we examined the reusability of mice after collecting oocytes via a surgical operation. When oocytes were collected using medetomidine/midazolam/butorphanol combination anesthesia and examined for the quality of oocytes after in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI), they could develop to full term at the same rate as controls. When oocytes were collected from those mice a second time, the average number of oocytes was reduced by nearly 1/3. However, the blastocyst and offspring rates of those oocytes after IVF or ICSI were the same as those of the control regardless of the recovery day period. Although GV oocytes can be collected from all reused mice, the final number of offspring did not increase. Interestingly, when oocytes were collected from the front position of the ampulla, 76% of the oviducts possessed oocytes after reuse, and the average number of oocytes significantly increased to a level comparable to that of the control. Finally, we examined whether reused mice can be used as recipient females, and then healthy offspring were obtained similarly as the control recipients. In conclusion, we provide a new method to collect a sufficient number of oocytes from reused mice without concern.