著者
Tomoya Shintani Yuhei Kosuge Hisashi Ashida
出版者
The Japanese Society of Applied Glycoscience
雑誌
Journal of Applied Glycoscience (ISSN:13447882)
巻号頁・発行日
vol.65, no.3, pp.37-43, 2018-08-20 (Released:2018-08-20)
参考文献数
45
被引用文献数
6 18

Glucosamine (GlcN) is commonly used as a dietary supplement to promote cartilage health in humans. We previously reported that GlcN could induce autophagy in cultured mammalian cells. Autophagy is known to be involved in the prevention of various diseases and aging. Here, we showed that GlcN extended the lifespan of the nematode Caenorhabditis elegans by inducing autophagy. Autophagy induction by GlcN was demonstrated by western blotting for LGG-1 (an ortholog of mammalian LC3) and by detecting autophagosomal dots in seam cells by fluorescence microscopy. Lifespan assays revealed that GlcN-induced lifespan extension was achieved with at least 5 mM GlcN. A maximum lifespan extension of approximately 30 % was achieved with 20 mM GlcN (p<0.0001). GlcN-induced lifespan extension was not dependent on the longevity genes daf-16 and sir-2.1 but dependent on the autophagy-essential gene atg-18. Therefore, we suggest that oral administration of GlcN could help delay the aging process via autophagy induction.
著者
Tomoya Shintani Shuichi Yanai Akane Kanasaki Misuzu Tanaka Tetsuo Iida Genki Ozawa Tadao Kunihiro Shogo Endo
出版者
The Japanese Society of Applied Glycoscience
雑誌
Journal of Applied Glycoscience (ISSN:13447882)
巻号頁・発行日
pp.jag.JAG-2022_0005, (Released:2022-09-09)

D-Allose, a C3 epimer of D-glucose, has potential to improve human health as a functional food. However, its effect on the intestinal environment remains unknown. Aged humans progressively express changes in the gut, some of which deleteriously affect gastrointestinal health. In this study, we profiled the intestinal microbiome in aged mice and analyzed organic acids produced by bacteria in cecum contents after long-term ingestion of D-allose. D-Allose did not significantly change organic acid concentration. However, long-term ingestion did significantly increase the relative abundance of Actinobacteria and reduce the relative abundance of Proteobacteria. These results suggest that oral D-allose improves the proportion of favorable intestinal flora in aged mice. D-Allose significantly decreased the relative abundance of Lachnospiraceae bacteria, but increased the relative abundance of Bacteroides acidifaciens and Akkermansia muciniphila. Thus, D-allose might serve as a nutraceutical capable of improving the balance of gut microbiome during aging.
著者
Tomoya Shintani Hirofumi Sakoguchi Akihide Yoshihara Ken Izumori Masashi Sato
出版者
The Japanese Society of Applied Glycoscience
雑誌
Journal of Applied Glycoscience (ISSN:13447882)
巻号頁・発行日
pp.jag.JAG-2019_0010, (Released:2019-10-24)
被引用文献数
7

D-Allose (D-All), C-3 epimer of D-glucose, is a rare sugar known to suppress reactive oxygen species generation and prevent hypertension. We previously reported that D-allulose, a structural isomer of D-All, prolongs the lifespan of the nematode Caenorhabditis elegans. Thus, D-All was predicted to affect longevity. In this study, we provide the first empirical evidence that D-All extends the lifespan of C. elegans. Lifespan assays revealed that a lifespan extension was induced by 28 mM D-All. In particular, a lifespan extension of 23.8% was achieved (p < 0.0001). We further revealed that the effects of D-All on lifespan were dependent on the insulin gene daf-16 and the longevity gene sir-2.1, indicating a distinct mechanism from those of other hexoses, such as D-allulose, with previously reported antiaging effects.